	Template for comments and secretariat observations
	Date:
	Document: ISO/

	1
	2
	3
	4
	5
	6
	7

	MB1

	Clause/
Subclause/
Annex/Figure/Table
(e.g. 3.1, Table 2)
	Paragraph/
List item/
Note/
(e.g. Note 2)
	Type of com-ment2
	Comment (justification for change)
	Proposed change
	Secretariat observations
on each comment submitted

	Template for comments and secretariat observations
	Date: August 16, 2017
	Document: SC 22 N5212
	Project: Second CD

	MB/NC1
	Line number
(e.g. 17)
	Clause/ Subclause
(e.g. 3.1)
	Paragraph/ Figure/ Table/
(e.g. Table 1)
	Type of comment2
	Comments
	Proposed change
	Observations of the secretariat

	[bookmark: _GoBack]
	[191:27]
	11.1.7.2

	C1129
	te
	C1129 prevents existence of statement or construct entities of statements or constructs within a DO CONCURRENT construct if DEFAULT (NONE) appears. See 17-183.
	Insert ", is not a statement entity, is not a construct entity of a construct within that DO CONCURRENT construct," after "<block> of the construct".
	

	
	[194:24+]
	11.1.7.5

	P1+
	ed
	It is not obvious whether statement or construct entities of statements or constructs within DO CONCURRENT constructs are the same entity in every iteration, and therefore subject to the rules concerning unspecified locality, or they are different entities in every iteration. See 17-183.
	Insert a note
" NOTE 11.10a
 A statement entity of a statement within a DO CONCURRENT construct is a different entity in each iteration. A construct entity of a DO CONCURRENT construct, or a nonsaved construct entity of a BLOCK construct, within a DO CONCURRENT construct, is a different entity in each iteration of the containing DO CONCURRENT construct. A saved variable that is a construct entity of a BLOCK construct within a DO CONCURRENT construct is the same entity in every iteration and has unspecified locality."
	

	
	[194:25]
	11.1.7.5

	P2
	te
	Ensure that a statement or construct entity of a statement or construct within a DO CONCURRENT, that has the same name as a variable with LOCAL locality, is not specified to become a construct entity of the DO CONCURRENT construct. See 17-183.
	Replace "LOCAL or LOCAL_INIT locality is a construct entity with" with "LOCAL or LOCAL_INIT locality, and is not a construct or statement entity of a construct or statement within the DO CONCURRENT construct, is a construct entity of the DO CONCURRENT construct; it has".
	

	
	[121:7]
	8.7

	P4
	te
	Implicit type declaration of a variable declares only the type and kind, not any other attributes. 8.7p4 specifies that the effect of implicit type declaration of a variable in a BLOCK construct is as if the variable were explicitly declared within the outermost inclusive scope containing the BLOCK construct, and the variable is therefore not a construct entity. This clearly conflicts with explicit declaration of other attributes, for example, rank, within a BLOCK construct, the result of which causes the entity to be a construct entity, according to 19.4p1. Examples in 17-184.
	Delete "inclusive".
	

	
	[516:12]
	19.4

	P1
	te
	Subclause 19.4 prohibits implicit type declaration of construct entities of BLOCK constructs. In light of 8.7p4 saying “as if … explicitly” this might not be necessary. See 17-184.
	Replace "explicitly" with "explicitly or implicitly".
	

	
	[516:13]
	19.4

	P4
	te
	A variable within a BLOCK construct that is typed implicitly and otherwise declared only in an ASYNCHRONOUS or VOLATILE statement is not a construct entity, but ought to be. See 17-184.
	Replace "only in ASYNCHRONOUS and VOLATILE" with "one accessed by use or host association and declared only in ASYNCHRONOUS or VOLATILE".
	

	
	[125:20-22]
	8.9

	P5
	ed
	The term “earlier” is usually but not always used to express a temporal relationship, e.g., “earlier standards.” When applied to the relative appearance of syntax terms, “previously” is usually used, and should be used in several places where “earlier” is used. See 17-185.
	Replace the first sentence, viz. "A namelist group object ... scoping unit" with "The {declared type}, kind type parameters of the {declared type}, and {rank} of a namelist group object shall have been previously declared, or implied by implicit typing rules in effect for the scoping unit." {…} means hyperlink.
	

	
	[297:1]
	14.2.2

	P2
	ed
	An entity accessed by use association is specified to be previously defined in the scoping unit where it is accessed. This is correct for type definitions, but not for variable declarations. See 17-185.
	Before "defined" insert "declared or".
	

	
	[310:15]
	15.4.3.4.5

	C1514(4)
	ed
	The term “earlier” is usually used for a temporal relationship. For the positional relationship of syntax entities, “previously” or “before” should be used. See 17-185.
	Replace "earlier in the argument list than" with "appear in the argument list before". Since this doesn't refer to a definition, this edit might not be necessary.
	

	
	[518:1]
	19.5.1.4

	P1
	te
	An entity accessed by use association is considered to be previously defined or declared within the scoping unit in which it is accessed. The same ought to be explicit for entities accessed by host association. See 17-185.
	Before "In the case..." insert a sentence "A host-associated entity is considered to have been previously declared or defined." Compare to 14.2.2p2 at [297:1].
	

	
	[27:11+5]
	4.1.1

	P1
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[53:6]
	6.3.1

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[53:19]
	6.3.2.2

	P1
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[54:9]
	6.3.2.4

	P1
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[55:11]
	6.3.3.3

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[55:19]
	6.3.3.5

	P1
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[65:11]
	7.4.4.1

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[67:4]
	7.4.4.3

	P3
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occurrence" with "appearance".
	

	
	[86:5+3]
	7.5.7.2

	NOTE 7.52
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "Inaccessible entities occur" with "An entity may be inaccessible".
	

	
	[125:15]
	8.9

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "once for each occurrence" with "on output once for each appearance as a <namelist-group-object>" to correspond to "appear" (not "occur") on the previous line.
	

	
	[125:16]
	8.9

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear" to correspond to "appearance" (not “occurrence”) on the next line.
	

	
	[127:5]
	8.10.1.5

	P1
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[127:30]
	8.10.2.1

	P4
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear" to correspond to "appearance" on the next line.
	

	
	[179:14]
	10.2.3.2

	P9
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[243:24]
	12.6.4.5.1

	P4
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occurrence" with "appearance".
	

	
	[268:0+6]
	13.2.2

	NOTE 13.2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occurs" with "appears".
	

	
	[310:14]
	15.4.3.4.5
	C1514(4)
	ed
	The term “occur” usually applies to events. The term “appear” should be used for syntax terms. See 17-186.
	Replace "occur" with "appear".
	

	
	[331:31,33]
	15.6.2.2

	P4
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occurrences" with "appearances" twice.
	

	
	[516:4]
	19.3.5

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occurs" with "appears".
	

	
	[220:12]
	12.2.4

	P2
	ed
	The term "occur" is used mostly to refer to events, and “appear” is used with respect to syntax entities. But sometimes “occur” is used for the latter where “appear” ought to be used. See 17-186.
	Replace "occur" with "appear".
	

	
	[139:29]
	9.6
	P3
	te
	It was expected that the team values on the images of a team would differ from image to image to enable each image to access any other image of the team efficiently. It is therefore important that when the value is referenced by an image, it is the value that was defined by that image. Edits are needed to specify that a team value identifies an image as well as a team.
	After “identify” add “the executing image and”.
	

	
	[188:5]
	11.1.5.2
	P1
	te
	See the comment for 139:29. Also, it was intended that the CHANGE TEAM statement be allowed to use team values defined by the intrinsic GET_TEAM.
	Change “defined by ... (11.6.9)” to “that identify those images and a single team”.
	

	
	[213:3,4]
	11.6.6
	P1
	te
	See the comment for 139:29.
	After “identify” add “the executing image and”. Delete the sentence “The executing …”
	

	
	[214:34]
	11.6.9
	P2
	te
	See the comment for 139:29.
	After “identifies” add “that image and”.
	

	
	[389:14-16]
	16.9.85
	P5
	te
	See the comment for 139:29.
	After “identifies” add “the executing image and”, thrice.
	

	
	[333:32-33]
	15.6.2.5
	P3
	ed
	The description of recursive separate module subprograms can be simplified because the default is RECURSIVE.
	Replace beginning of second sentence
“It is recursive if and only if it is declared to be recursive” with “It is recursive unless it is declared to be nonrecursive”
17-187
	

	
	[284:13]
	13.8.5
	P1
	ed
	The scale factor P affects the editing done by the G edit descriptor for “numeric quantities” but the text fails to exclude integer formatting, for which scale factors are inapplicable.
	In line 14, replace “numeric” with “real and complex”
	

	
	[330:33-34]
	15.6.2.1
	P6
	ed
	C1555 is covered by C1554.
	Merge C1555 and C15554 and revise as 17-140 explains that these are not identical because there is a difference between “interoperable” and “of interoperable type”.
	

	
	[121:7]
	8.7
	P4
	te
	The use of “inclusive scope” in the specified text seems problematic.
An issue is described in paper 17-184 that the scope of an implicit declared variable should include the block scoping unit rather than its inclusive scope.

	[121:7] Replace “inclusive scope” with “scoping unit”
	

	
	[187] Note 11.4
	11.1.4
	Note 11.4
	ed
	In the code, the first appearance of ‘Z” is in the block scoping unit. It seems suggest that the implicit declaration of “Z” is actually in the inclusive scope as 8.7p4 states.
It will become confusing after the fix of 8.7p4 to replace “inclusive scope” with “scoping unit”.
	[187] Note 11.4: Add “Z = 1” in the scoping unit of subroutine “S”.
	

	
	[170:17-25]
	10.2.1.3
	P3
	te
	The portion of 10.2.1.3 paragraph 3 describing intrinsic assignment to an allocatable polymorphic variable does not address the possibility of a mismatched kind type parameter. 10.2.1.2 paragraph 1 item (7) precludes such a mismatch in any kind type parameter that is part of the declared type of the variable, but if the dynamic type is different, there exists the possibility of kind type parameters added in the extension. It does not appear that this failure to address was intentional: Such kind type parameter mismatches are definitely not allowed in the nonpolymorphic case. Although a plausible interpretation can be made for how to handle the mismatch in the most common cases, the cost of implementing that interpretation is significant. For many of the less common cases, no such plausible interpretation appears to exist.

	In 10.2.1.3, paragraph 3, sentence 2, after “the dynamic type”, insert “or any of the corresponding kind type parameter values”.

	

	
	[383:20]
[425:6]
	16.9.76
16.9.165
	
	te
	The same discussion that led me to examine 10.2.1.3 also led me to look at the specifications of the intrinsic functions SAME_TYPE_AS and EXTENDS_TYPE_OF. The issues I see there are less definitive, but I include them here in case circumstances prove favorable for addressing them:
1. Taken by itself, the second sentence of NOTE 16.26 is vaguely mysterious. It is only by looking elsewhere in the standard that I conclude that this was intended to convey that if either argument to SAME_TYPE_AS is an unlimited polymorphic that is disassociated or unallocated, SAME_TYPE_AS should return false. I suggest that be made explicit, either in the specification or the note.
1. I am troubled by the aspects of these functions that are processor dependent. In the absence of any way for a program to know whether the results it receives are from a well-specified or processor-defined case, there is no way to attach any meaning to those results. I suggest adding a note to both functions encouraging a policy for these cases of “when in doubt, return false”. Such a policy would allow a program to attach meaning to true results.
1. I would prefer it if the results for intrinsic dynamic types were consistent with those for extensible derived types, rather than processor dependent. However, I recognize that “processor dependent” would allow processors to implement that way now and allow a future revision to impose that requirement, so I am not proposing any change in this regard unless changes here are deemed necessary for some other reason.
1. I am of the opinion that a serious error of omission took place with respect to these functions during the creation of F2003 and that this error has been propagated to subsequent revisions. These functions were precursors of the TYPE IS and CLASS IS type guards in the SELECT TYPE construct and were expected to produce equivalent results. When parameterized derived types were added to F2003, the type guards were modified to require kind type parameter value matching, but an equivalent change was not made in these two functions. Unfortunately, the result of this omission was not an incomplete or broken specification, just one sometimes giving the “wrong” answer. In the general case, there is nothing more that can be done with two objects known to be of the same type, but not necessarily the same kind type parameter values, than can be done with objects of different types.

	My preference would be to “fix” the specifications to require matching corresponding type parameter values for a true result. Alternatively, the functions could be marked now as obsolescent, since no replacement should be necessary for features which have no useful functionality. Simply ignoring the problem does not strike me as a reasonable response.

	

1	MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China)	** = ISO/CS editing unit
2	Type of comment:	ge = general	te = technical 	ed = editorial
NB	Columns 1, 2, 4, 5 are compulsory.
page 1 of 1
FORM 13B (ISO) version 2001-09
1	MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2	Type of comment:	ge = general	te = technical 	ed = editorial
page 1 of 9
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03
