
Reference number of working document: ISO/IEC JTC1/SC22/WG5 Nxxxx

Date: 2010-2-24

Reference number of document: ISO/IEC TR 99999:2010(E)

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Accessor procedures

Technologies de l’information — Langages de programmation — Fortran —
Procédures d’accès aux structures de données

ISO/IEC TR 99999:2010(E)

Contents
0 Introduction . 1

0.1 History . 1
0.2 The problem to be solved . 1
0.3 What this report proposes . 1

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Syntax of declaration of objects of type SECTION 3
2.4 Section part designator . 4
2.5 Expressions of type SECTION . 4
2.6 Accessor definition syntax . 4
2.7 Invocation of an accessor . 6
2.8 Accessor interface bodies . 7
2.9 Reference to accessors . 7
2.10 Compatible extension of substring range . 8
2.11 Compatible extension of subscript triplet . 8
2.12 Compatible extension of vector subscript . 8
2.13 LOWER BOUNDED (A) . 9
2.14 SECTION AS ARRAY (A) . 9
2.15 UPPER BOUNDED (A) . 9
2.16 Existing intrinsic functions as accessors . 10

3 Required editorial changes to ISO/IEC 1539-1:2010(E) 11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a techni-
cal committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of technical committees is to prepare International Standards. Draft International Stan-
dards adopted by the technical committees are circulated to the member bodies for voting. Publication
as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ISO/IEC TR 99999:2010(E) was prepared by Joint Technical Committee ISO/IEC/JTC1, Information
technology, Subcommittee SC22, Programming languages, their environments and system software in-
terfaces.

This technical report specifies an extension to the computational facilities of the programming language
Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010(E).

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran International Standard without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or

c© ISO/IEC 2010 – All rights reserved i

ISO/IEC TR 99999:2010(E)

changes are needed to achieve proper integration, in which case every reasonable effort will be made to
minimize the impact of such changes on existing implementations.

ii c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

0 Introduction

0.1 History1

1 After high-level programming languages had been in use for about a decade, it was realized that programs2

are difficult to maintain and modify because the details of the implementation of each data structure3

were exposed in the syntax used to reference the representation of the data.4

2 Two fundamentally different solutions were proposed for the problem.5

3 In 1970 Douglas T. Ross proposed that the same syntax ought to be used to refer to every kind of data6

object, and to procedures.7

4 Charles M. Geschke and James G. Mitchell repeated this proposal in 1975.8

5 In 1972 David Parnas proposed that this could be achieved almost completely by encapsulating all9

operations on a data structure in a family of related procedures.10

6 No major programming language has been revised to incorporate the principles advocated by Ross,11

Geschke and Mitchell.12

7 Rather, it has apparently been judged that the problem can be adequately solved by program authors13

employing the principles advocated by Parnas.14

1. Charles M. Geschke and James G. Mitchell, On the problem of uniform references to data structures,15

IEEE Transactions on Software Engineering SE-2, 1 (June 1975) 207-210.16

2. David Parnas, On the criteria to be used in decomposing systems into modules, Comm. ACM17

15, 12 (December 1972) 1053-1058.18

3. D. T. Ross, Uniform referents: An essential property for a software engineering language, in Soft-19

ware Engineering 1 (J. T. Tou, Ed.), Academic Press, (1970) 91-101.20

0.2 The problem to be solved21

1 There are two problems with the Parnas agenda.22

2 First, it is difficult and costly to apply completely and consistently. If it hasn’t been applied carefully23

and completely during the original development of a program, the program is difficult to modify.24

3 Second, it is potentially inefficient, because all operations on data structures are encapsulated within25

procedures. Awareness of this potential is an incentive not to use it carefully and completely.26

0.3 What this report proposes27

1 This technical report extends the programming language Fortran so that the representation of a data28

abstraction can be changed between a data object and a procedure without changing the syntax of any29

references to it.30

2 The facility specified by this technical report is compatible to the computational facilities of Fortran as31

standardized by ISO/IEC 1539-1:2010(E).32

c© ISO/IEC 2010 – All rights reserved 1

ISO/IEC TR 99999:2010(E)

Information technology – Programming Languages – Fortran33

Technical Report: Accessors34

1 General35

1.1 Scope36

1 This technical report specifies an extension to the programming language Fortran. The Fortran language37

is specified by International Standard ISO/IEC 1539-1:2010(E) : Fortran. The extension allows the38

representation of a data object to be changed between an array and a procedure, or between a structure39

component and a procedure, without changing the syntax of references to that data object.40

2 Clause 2 of this technical report contains a general and informal but precise description of the extended41

functionalities. Clause 3 contains detailed instructions for editorial changes to ISO/IEC 1539-1:2010(E).42

1.2 Normative References43

1 The following referenced documents are indispensable for the application of this document. For dated44

references, only the edition cited applies. For undated references, the latest edition of the referenced45

document (including any amendments) applies.46

2 ISO/IEC 1539-1:2010(E) : Information technology – Programming Languages – Fortran; Part 1: Base47

Language48

c© ISO/IEC 2010 – All rights reserved 1

ISO/IEC TR 99999:2010(E)

2 Requirements1

2.1 General2

1 The following subclauses contain a general description of the extensions to the syntax and semantics of3

the Fortran programming language to provide that the representation of a data object can be changed4

between an array and a procedure, or between a structure component and a procedure, without changing5

the syntax of references to that data object.6

2.2 Summary7

2.2.1 General8

1 This technical report defines a new form of subprogram called an accessor. An accessor defines two kinds9

of procedures, a function and a new kind of procedure called an updater. It can be invoked in a data10

reference context, in which case its function is executed and its result is a value. It can also be invoked11

in a variable definition context, in which case its updater is executed and the value is passed to the12

updater. There is presently nothing comparable in Fortran, but it has been provided in other languages13

such as Mesa and POP-2 (but not in any widely-used language). This dual nature of invocation allows14

the representation of a data abstraction to be changed between function and updater procedures, and a15

data object, without changing the syntax of references to it.16

2 This technical report defines a new intrinsic data type called a section that has the same properties as a17

section subscript, and a constructor that has the same syntax as a section triplet. This allows variables18

and procedure dummy arguments that have those properties, which in turn allows the representation of19

an object to be changed between a function and updater, and an array, without changing the syntax of20

references to it.21

2.2.2 Objects of type SECTION22

1 Variables, structure components, function result values, or named constants can be of type SECTION.23

Objects of type SECTION have three parts, each represented by an integer, all of the same kind, which24

kind is specified in the object declaration. The parts are the lower bound, the upper bound, and the25

stride. There is additional data in the representation to indicate whether the lower or upper bound is26

specified. Therefore objects of type SECTION cannot be storage associated with objects of other types.27

2.2.3 SECTION type declaration28

1 The type declaration statement is extended to provide for declarations of objects of type SECTION.29

2.2.4 SECTION structure component declaration30

1 The data component declaration is extended to provide for declarations of structure components of type31

SECTION.32

2.2.5 Constructor for values of type SECTION33

1 The constructor for values of type SECTION is the same as subscript-triplet.34

2.2.6 Reference to parts of SECTION objects35

1 The lower bound part, upper bound part, and stride part of an object of type SECTION can be accessed36

using the same syntax as for structure component selection, or parts of a complex variable. The names37

of these parts are LBOUND, UBOUND, and STRIDE.38

2 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

2 Intrinsic procedures named LOWER BOUNDED and UPPER BOUNDED are provided to determine1

whether the lower and upper bound parts of an object of type SECTION are specified. If the stride is2

not specified its value is 1.3

2.2.7 Constructing an array from a SECTION object4

1 An intrinsic procedure named SECTION AS ARRAY is provided to produce a rank-one integer array5

whose values are the elements denoted by an object of type SECTION.6

2.2.8 Definition of accessor subprograms7

1 A new subprogram entity called an ACCESSOR is defined. An accessor has a function part and an8

updater part , each of which declares a subprogram that defines a procedure. When an accessor is9

referenced to provide the value of a primary during evaluation of a function, the function part is invoked,10

and the result value is provided in the same way as by a function subprogram. When an accessor is11

referenced in a variable definition context, the updater part is invoked, and the value to be defined is12

transferred to the updater in the acceptor variable.13

2 Accessor subprograms can be type bound procedures and can be procedure pointer targets.14

2.2.9 Syntax of reference to accessor procedures15

1 A reference to an accessor is permitted where a reference to or definition of a variable is permitted.16

NOTE 2.1
For example, an accessor reference can appear within an expression, as the variable in an intrinsic
assignment statement, in an input/output list in either a READ or WRITE statement, in place of
a variable in a control information list. . . .

2 An accessor is referenced using an extension of the syntax of a function reference. The extended syntax is17

the same as is used to reference an array or a character substring, which in turn allows the representation18

of an object to be changed between a function and updater, and a character scalar or an array, without19

changing the syntax of references to it.20

3 Where a reference appears in a value reference context the function part of the assessor is invoked21

to produce a value. Where it appears in a variable definition context the updater part is invoked to22

accept a value. Where it appears as an actual argument associated with a dummy argument with23

INTENT(IN), the function part is invoked to produce a value before the procedure to which it is24

an actual argument is invoked. Where it appears as an actual argument associated with a dummy25

argument with INTENT(OUT), the updater part is invoked to accept a value after the invoked procedure26

completes execution. Where it appears as an actual argument associated with a dummy argument with27

INTENT(INOUT) or unspecified intent, the function part is invoked to produce a value before the28

procedure to which it is an actual argument is invoked, and the updater part is invoked to accept a value29

after the invoked procedure completes execution.30

NOTE 2.2
If an accessor reference appears as an actual argument, copy-in, copy-out or copy-in/copy-out
argument passing is required.

2.3 Syntax of declaration of objects of type SECTION31

1 The syntax of intrinsic-type-spec is extended to provide for declaration of structure components, vari-32

ables, and named constants of type SECTION.33

c© ISO/IEC 2010 – All rights reserved 3

ISO/IEC TR 99999:2010(E)

R404 intrinsic-type-spec is . . .1

or SECTION [(kind-type-selector)]2

2 The kind-type-selector specifies the kind of the integer parts of the entity declared. If it does not appear3

the integer parts are of default kind.4

2.4 Section part designator5

1 A section part designator has a syntax similar to component selection or a complex part designator.6

R615a section-part-designator is designator % LBOUND7

or designator % UBOUND8

or designator % STRIDE9

2 The type of section-part-designator is integer with the same kind as designator .10

3 In a reference, if section-part-designator is designator%LBOUND, LOWER BOUNDED(designator)11

shall not be false, and if section-part-designator is designator%UBOUND, UPPER BOUNDED(desig-12

nator) shall not be false. In a variable-definition, context LOWER BOUNDED(designator) or UPPER -13

BOUNDED(designator) may be true.14

NOTE 2.3
Alternatively, the value of designator%LBOUND could be −HUGE(designator%LBOUND) when
LOWER BOUNDED(designator) is false, and the value of designator%UBOUND could be
HUGE(designator%UBOUND) when UPPER BOUNDED(designator) is false.

2.5 Expressions of type SECTION15

1 The syntax of designator is extended to include section part designators.16

R601 designator is . . .17

or section-part-designator18

2 The syntax of primary is extended to include the constructor for objects of type SECTION.19

R701 primary is . . .20

or section-constructor21

R424a section-constructor is [scalar-int-expr] : [scalar-int-expr] [: scalar-int-expr]22

3 A section-constructor constructs a value of type SECTION. The first scalar-int-expr provides the lower23

bound for the section. If it does not appear, the LOWER BOUNDED intrinsic function would return24

false. The second provides the upper bound for the section. If it does not appear, the UPPER -25

BOUNDED intrinsic function would return false. The third provides the stride. If it does not appear26

the value of the stride is 1.27

4 No intrinsic operations are defined for objects of type SECTION.28

2.6 Accessor definition syntax29

1 An accessor is a subprogram that consists of two subprograms, a function and an updater, that have the30

same name. The abstract interfaces of the function and updater are identical, except that the acceptor31

variable of an updater cannot be a pointer or allocatable. An important addition to the syntax of an32

accessor definition is aux-dummy-arg-name, which allows a reference to have a syntax that is compatible33

with character substring reference.34

4 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

R1226a accessor-subprogram is accessor-stmt1

[specification-part]2

function-part3

updater-part4

[internal-subprogram-part]5

end-accessor-stmt6

R1226b accessor-stmt is [prefix] ACCESSOR accessor-name7

([dummy-arg-name-list]) [(aux-dummy-arg-name)]8

R1226c end-accessor-stmt is END [ACCESSOR [accessor-name]]9

R1226d aux-dummy-arg-name is dummy-arg-name10

R1226d function-part is function-part-stmt11

[specification-part]12

[execution-part]13

14

R1226e updater-part is updater-part-stmt15

[specification-part]16

[execution-part]17

18

R1226f function-part-stmt is FUNCTION PART [RESULT (result-name)]19

R1226g updater-part-stmt is UPDATER PART [ACCEPT (acceptor-name)]20

C1251a (R1226b) If aux-dummy-arg-name appears it shall be scalar, have INTENT(IN), and be of type21

SECTION.22

C1251b (R1226f) If RESULT appears, result-name shall not be the same as accessor-name, and no23

attributes other than the ALLOCATABLE or POINTER attributes shall be specified for the24

result-name in the scoping unit of the function part of the accessor.25

C1251c (R1226g) If ACCEPT appears, acceptor-name shall not be the same as accessor-name, and26

no attributes other than the VALUE and INTENT(IN) attributes shall be specified for the27

acceptor-name in the scoping unit of the updater part of the accessor.28

C1251d (R1226a) An ENTRY statement shall not appear within the accessor.29

C1251e (R1226a) An internal accessor subprogram shall not contain an internal-subprogram-part .30

C1251f (R1226c) If accessor-name appears in the end-accessor-stmt , it shall be identical to the accessor-31

name specified in the accessor-stmt .32

C1251g (R1226a) The acceptor variable name shall not be specified to have the ALLOCATABLE or33

POINTER attribute within the scoping unit of the accessor or the scoping unit of the updater34

part of the accessor.35

C1251h (R1226a) No characteristic of the function or updater subprograms defined by the accessor,36

except whether the result of the function has the ALLOCATABLE or POINTER attribute, shall37

be specified within the specification-part of the scoping unit of the function part or updater part38

of the accessor.39

2 The name of the accessor is accessor-name.40

c© ISO/IEC 2010 – All rights reserved 5

ISO/IEC TR 99999:2010(E)

3 The type and type parameters of the accessor name may be specified by a type specification in the1

ACCESSOR statement or by the accessor name appearing in a type declaration statement in the2

specification-part of the scoping unit of the accessor subprogram. They shall not be specified both3

ways. If they are not specified either way, they are determined by the implicit typing rules in force4

within the scoping unit of the accessor. If the accessor is an array, this shall be specified by specifi-5

cations of the name of the accessor within the scoping unit of the accessor. If the result variable is a6

pointer or allocatable, this shall be specified by specifications of the name of the result variable within7

the scoping unit of the function part of the accessor.8

4 The acceptor variable is considered to be a dummy argument. It has all the attributes specified for9

the accessor name. Unless the VALUE attribute is specified for it within the updater part, it has10

the INTENT(IN) attribute, and this may be confirmed by explicit specification. The result variable11

has all the attributes specified for the accessor name. Within the function part, the POINTER or12

ALLOCATABLE attribute may be specified for it. The specifications of the result and acceptor variable13

attributes, the specification of dummy argument attributes, and the information in the ACCESSOR14

statement, collectively define the characteristics of the accessor (12.3.1).15

NOTE 12.40a
An acceptor variable cannot be a pointer or allocatable.

5 If RESULT appears, the name of the result variable of the function part of the accessor is result-name16

and all occurrences of the accessor name in execution-part statements in the scoping unit of the function17

part of the accessor refer to the accessor itself. If RESULT does not appear, the result variable name18

is accessor-name and all occurrences of the accessor name in execution-part statements in the scoping19

unit of the function part of the accessor are references to the result variable.20

6 If ACCEPT appears, the name of the acceptor variable of the updater part is acceptor-name and all21

occurrences of the accessor name in execution-part statements in the scoping unit of the updater part22

refer to the accessor itself. If ACCEPT does not appear, the acceptor variable name is accessor-name23

and all occurrences of the accessor name in execution-part statements in the scoping unit are references24

to the acceptor variable.25

7 The characteristics (12.3.3) of the result of the accessor where it is referenced to produce the value of26

a primary within an expression are the characteristics of the result variable. The characteristics of the27

accessor where it is referenced in a variable definition context are the characteristics of the acceptor28

variable.29

2.7 Invocation of an accessor30

1 When an accessor is invoked, the following events occur in the order specified.31

(1) The actual arguments are associated with their corresponding dummy arguments. If the32

accessor is invoked to accept a value the value to be accepted is considered to be an actual33

argument, and is associated with the acceptor variable.34

(2) All specification expressions within the specification-part of the scoping unit of the accessor35

are evaluated.36

(3) If the accessor is invoked to produce a value the function part is executed, else the updater37

part is executed.38

2 When the accessor is invoked to produce a value39

• if the result variable is a pointer, its pointer association status is undefined when execution of the40

accessor begins, the shape and association status of the result are determined by the shape of the41

result variable when execution of the accessor is completed, and the association status of the result42

variable shall not be undefined when execution of the accessor is completed;43

6 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

• if the result variable is not a pointer, its value is undefined when execution of the accessor begins,1

and it shall be defined by the accessor.2

3 When the accessor is invoked to accept a value the value of the acceptor variable is the accepted value3

and the accessor shall not change the value of the acceptor variable unless it has the VALUE attribute.4

4 As is the case with functions, if an accessor is pure all dummy arguments shall have the INTENT(IN)5

attribute or the VALUE attribute.6

5 Accessors are not interoperable; therefore the ACCESSOR statement does not include a proc-language-7

binding-spec.8

2.8 Accessor interface bodies9

1 The syntax of interface blocks is extended to allow accessor interface bodies.10

R1205 interface-body is . . .11

or accessor-stmt12

[specification-part]13

function-part-stmt14

[specification-part]15

updater-part-stmt16

[specification-part]17

end-accessor-stmt18

2.9 Reference to accessors19

1 A reference to an accessor is permitted where a reference to or definition of a variable is permitted.20

Where an accessor reference appears as a primary in an expression it is considered to be a reference to21

its function. Where an accessor appears in a variable definition context it is considered to be a reference22

to its updater.23

2 The syntax of an accessor reference is an extension of the syntax of a function reference. The extension24

makes it compatible with a scalar reference, an array element reference, a whole array reference, or a25

character substring reference, which in turn allows the representation of an object to be changed between26

an accessor and a data object without changing the syntax of references to it.27

R1218a accessor-reference is procedure-designator [actual-args] [(aux-actual-arg)]28

R1218b actual-args is ([actual-arg-spec-list])29

R1218c aux-actual-arg is actual-arg-spec30

C1223a (R1218a) The procedure-designator shall designate an accessor.31

3 Unlike a reference to a function, if an accessor name appears without either actual-args or aux-actual-32

arg it nonetheless specifies invocation of the accessor unless it is an actual argument associated with33

a dummy procedure, or a proc-target in a pointer assignment statement. For this reason, a procedure34

shall have explicit interface where it is invoked if it has an accessor dummy procedure argument. If it35

is desired to invoke the accessor when it appears in these contexts, either actual-args or aux-actual-arg36

shall appear.37

4 The syntax of designator is extended to allow references to accessors in value-providing and variable38

definition contexts.39

c© ISO/IEC 2010 – All rights reserved 7

ISO/IEC TR 99999:2010(E)

R601 designator is . . .1

or accessor-reference2

5 The syntax of intrinsic assignment already allows reference to an accessor in its variable-definition3

context.4

R732 assignment-stmt is variable = expr5

6 If assignment-stmt is accessor-reference = expr , the type and kind type parameter values of expr shall6

be the same as the transfer variable of the accessor. Either the rank of accessor-reference and expr shall7

be the same, or the accessor shall be elemental.8

2.10 Compatible extension of substring range9

1 The type SECTION is provided to allow a dummy argument of type SECTION, so that an accessor can10

replace an array or character variable without requiring change to the references. It seems pointless to11

restrict this only to actual arguments, so it makes sense to allow variables other than dummy arguments12

of type SECTION. Having a variable of type section and not allowing it to be used as a substring-range13

would be silly.14

R610 substring-range is scalar-section-expr15

R610a scalar-section-expr is scalar-expr16

C608a (R610a) The scalar-expr shall be an expression of type SECTION.17

2 The value of the stride of scalar-section-expr shall be 1.18

Unresolved Technical Issue 1

Does this introduce a syntax ambiguity?

2.11 Compatible extension of subscript triplet19

1 Having a variable of type section and not allowing it to be used as a subscript-triplet would be silly.20

R621 subscript-triplet is scalar-section-expr21

NOTE 2.4
Since no operations are defined on objects of type SECTION, the only possible expressions of
type SECTION are section constructors, variables of type SECTION, references to functions or
accessors of type SECTION, or such an expression enclosed in parentheses. Thus A((1:10)) is a
newly-allowed syntax having the same meaning as A(1:10).

2.12 Compatible extension of vector subscript22

1 Having an array of type section and not allowing it to be used as a vector-subscript would be silly.23

R623 vector-subscript is expr24

C627 (R623) A vector-subscript shall be an array expression of rank one and type integer or SECTION.25

2 If vector-subscript is of type SECTION the effect is as if the elements appeared as arguments to a26

sequence of references to the SECTION AS ARRAY intrinsic function in an array constructor, in array27

element order.28

8 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

NOTE 2.5
For example, if A is an array with two elements having values 1:5:2 and 5:1:-2, the effect is as if
the subscript were [SECTION AS ARRAY(A(1)), SECTION AS ARRAY(A(2))], which has the
value [1, 3, 5, 5, 3, 1].

2.13 LOWER BOUNDED (A)1

1 Description. Whether a lower bound is specified for a section.2

2 Class. Elemental function.3

3 Argument. A shall be of type SECTION.4

4 Result Characteristics. Default logical.5

5 Result Value. The result value is true if and only if A has a lower bound.6

2.14 SECTION AS ARRAY (A)7

1 Description. An array having element values of all elements of a section.8

2 Class. Transformational function.9

3 Argument. A shall be a scalar of type SECTION. Neither LOWER BOUNDED(A) nor UPPER -10

BOUNDED(A) shall be false. The value of A%STRIDE shall not be zero.11

4 Result Characteristics. Rank one array of type integer and the same kind as A. The size of the result12

is the number of elements denoted by the section, which is MAX(0, (A%UBOUND − A%LBOUND +13

A%STRIDE) / A%STRIDE).14

5 Result Value. The result value is the same as the expression [(I, I = A%LBOUND, A%UBOUND,15

A%STRIDE)] where I is an integer of the same kind as A.16

NOTE 2.6
The description of the result value makes it clear that SECTION AS ARRAY is not really needed;
it is pure syntactic sugar.

6 Examples. The value of SECTION AS ARRAY (5:1:-2) is [5, 3, 1]. The value of SECTION AS AR-17

RAY (5:1:2) is [] and the size of the result value is zero.18

2.15 UPPER BOUNDED (A)19

1 Description. Whether an upper bound is specified for a section.20

2 Class. Elemental function.21

3 Argument. A shall be of type SECTION.22

4 Result Characteristics. Default logical.23

5 Result Value. The result value is true if and only if A has an upper bound.24

c© ISO/IEC 2010 – All rights reserved 9

ISO/IEC TR 99999:2010(E)

2.16 Existing intrinsic functions as accessors1

1 The following intrinsic functions could be defined to be accessors. When a reference appears in a2

variable-definition context3

• REAL(X) with complex X is equivalent to X%RE,4

• AIMAG(X) with complex X is equivalent to X%IM,5

• ABS(X) with numeric X changes the modulus without changing the phase,6

• FRACTION(X) with real X changes the fraction, and7

• EXPONENT(X) with real X changes the exponent.8

10 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

3 Required editorial changes to ISO/IEC 1539-1:2010(E)1

The following editorial changes to ISO/IEC 1539-1:2010(E), if implemented, would provide the facilities2

described in foregoing clauses of this report. Descriptions of how and where to place the new material3

are enclosed between square brackets. Page and line numbers refer to ANSI/INCITS/PL22.3 standing4

document 10-007r1.5

[2:10+ 1.3.1+] Editor: Insert new subclauses:6

1.3.1a7

acceptor variable8

variable that transfers a value into an accessor invoked in a variable definition context (12.6.2.1a)9

1.3.1b10

accessor11

procedure that can be invoked by an expression or in a variable definition context (12.6.2.1a)12

[5:3+ 1.3.20+] Editor: Insert two new subclauses:13

“1.3.20a14

characteristics15

(acceptor variable) properties listed in 12.3.2a16

[8:34+ 1.3.61+] Editor: Insert a new subclause:17

“1.3.62.1a18

dummy accessor19

dummy argument that is an accessor”20

[8:37 1.3.62] Editor: Replace “a FUNCTION” by “an ACCESSOR, a FUNCTION”.21

[9:37 1.3.66] Editor: Before “end-block-data-stmt” insert “end-accessor-stmt , ”.22

[15:15+ 1.3.120+] Editor: Insert a new subclause:23

“1.3.120a24

accessor reference25

appearance of a procedure designator for an accessor, or operator symbol in a context requiring execution26

of the function part of the accessor during expression evaluation (12.5.3)”27

[15:22 1.3.120.2] Editor: Append a clause at the end: “; an accessor reference that results in execution28

of the function part of the accessor is a function reference”.29

[15:42 1.3.124] Editor: Before “BLOCK” insert “Accessor, ”.30

[18:15 1.3.143] Editor: Before “function-subprogram” insert “accessor-subprogram (R1226a), ”; insert a31

comma before “or”.32

[20:35+ 1.3.153+] Editor: Insert a new subclause:33

“1.3.153a34

updater35

procedure that is invoked in a variable definition context36

c© ISO/IEC 2010 – All rights reserved 11

ISO/IEC TR 99999:2010(E)

[27:17 R203] Editor: Add an alternative for R203 external-subprogram:1

R203 external-subprogram is accessor-subprogram2

or function-subprogram3

[27:18 R203+] Editor: Add quotations of the new syntax rule R1226a:4

R1226a accessor-subprogram is accessor-stmt5

[specification-part]6

function-part7

updater-part8

[internal-subprogram-part]9

end-accessor-stmt10

[28:29 R211] Editor: Add an alternative for R211 internal-subprogram:11

R211 internal-subprogram is accessor-subprogram12

or function-subprogram13

[28:33 R1108] Editor: Add an alternative for R1108 module-subprogram:14

R203 module-subprogram is accessor-subprogram15

or function-subprogram16

[29:31+] Editor: Add an alternative for R214 action-stmt :17

or end-accessor-stmt18

[30:8 C201] Editor: Before “end-function-stmt” insert “end-accessor-stmt , ”.19

[30:14 2.2.1p2] Editor: Before “a function” insert “an accessor subprogram,” replace “or” by a comma;20

after “subroutine” insert “, or an updater subprogram”.21

[30:17+ 2.2.1p2+] Editor: Insert a new note:22

NOTE 2.1a
An accessor subprogram defines a function subprogram and an updater subprogram.

[30:26 2.2.3p1] Editor: Replace “either a function or a subroutine” by “a function, a subroutine, or an23

updater”.24

[31:18+2 Table 2.1] Editor: After “PROGRAM” insert “, ACCESSOR”.25

[32:11,13 2.3.3p1] Editor: Before “end-function-stmt” insert “end-accessor-stmt , ” twice26

[33:8,11 2.3.5p2] Editor: Divide 2.3.5p2 into three paragraphs at “When” and “With”. Then insert a27

new paragraph between the first two:28

“When an accessor is invoked the specification expressions within the specification-part of the accessor,29

if any, are evaluated in a processor dependent order, followed by execution of either the function or30

updater part.”31

[34:17 2.4.1.2p1] Editor: Replace “and function results” by “, function results, and acceptor values,”32

12 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

[34:29+ 2.4.3.1p2+] Editor: Insert a new paragraph:1

“A data entity that is passed to an updater that is invoked in a variable definition context is called the2

acceptor value.”3

[36:6,7 2.4.3.4p1] Editor: Before “(12.3.3)” insert “or accessor”.4

[36:31+2 Note 2.12] Editor: After “function” insert “or accessor”.5

[45:24+ 3.3.2.2p3] Editor: In the table of adjacent keywords where separating blanks are optional, insert6

“END ACCESSOR” in alphabetical order.7

[49:26 4.1.4p1] 4.1.4p1] Editor: After “functions” insert “and accessors”.8

[52:3+ 4.3.1.2p2+] Editor: Insert a new paragraph:9

If the data entity is an acceptor variable or function result variable in an accessor, the derived type10

may be specified in the ACCESSOR statement provided the derived type is defined within the body11

of the accessor or is accessible there by use or host association. If the derived type is specified in the12

ACCESSOR statement and is defined within the body of the accessor, it is as if the acceptor variable13

and function result variable were declared with that derived type immediately after the derived-type-def14

of the specified derived type.15

[53:6+] Editor: Insert an additional alternative for syntax rule R404:16

or SECTION [kind-selector]17

[60:20+] Editor: Insert a new subclause:18

4.4.5 Section type19

4.4.5.1 General20

The section type consists of three parts, all objects of integer type of the same kind. The processor shall21

provide a kind of type section corresponding to each integer kind. The kind type parameter of an object22

of section type is returned by the intrinsic function KIND (13.7.80).23

The type specifier for the section type uses the keyword SECTION.24

The keyword SECTION with no kind-selector specifies type section with the same kind as default integer25

kind.26

The parts of an object of type section are the lower bound, the upper bound, and the stride.27

No intrinsic operations are defined for objects of type section.28

4.4.5.2 Construction of values of section type29

R424a section-constructor is [scalar-int-expr] : [scalar-int-expr] [: scalar-int-expr]30

A section-constructor constructs a value of type SECTION. The first scalar-int-expr provides the lower31

bound for the section. If it does not appear, the LOWER BOUNDED intrinsic function would return32

false. The second provides the upper bound for the section. If it does not appear, the UPPER -33

BOUNDED intrinsic function would return false. The third provides the stride. If it does not appear34

the value of the stride is 1.35

c© ISO/IEC 2010 – All rights reserved 13

ISO/IEC TR 99999:2010(E)

[73:15-16 C465] Editor: After “or” insert “ accessor,”; after “interface” insert “, or an external accessor1

subprogram”.2

[78:15 4.5.7.3p2] Editor: Replace “or” by a comma; append a phrase at the end of the sentence: “,3

or both shall be accessors for which all acceptor variables and function result variables have the same4

characteristics (12.3.2a)”.5

[80:27+2-3 Note 4.58] Editor: After “function-reference” insert “or accessor-reference” twice.6

[87:7+ 5.1p1+] Editor: Insert a new paragraph:7

An accessor has a type and rank and may have type parameters and other attributes that determine8

the uses of the accessor. The type, rank, and type parameters are the same as those of its acceptor and9

result variables.10

[89:20 C515] Editor: After “for” insert “an acceptor variable or for”.11

[91:17 C523] Editor: Before “a function” insert “an acceptor variable and not”.12

[91:20 C525] Editor: Before “and” insert “shall not be an acceptor variable,”.13

[97:9 C538] Editor: “or” by a comma; at the end insert “, or an acceptor variable”.14

[97:11+ C539+] Editor: Insert a new constraint:15

C539a (R523) An entity with the INTENT(OUT) or INTENT(INOUT) attribute shall not be an16

acceptor variable.17

[99:5 C543] Editor: Replace “functions” by “accessors, all be functions,”18

[101:7 C554] Editor: Replace “a function result” by “an acceptor variable, a function result variable”.19

[103:6+ R527+] Editor: Insert a new constraint:20

C563a (R527) An object-name shall not be an acceptor variable.21

[104:30 C567] Editor: Replace “a function name, a function result” by “an acceptor variable, a function22

name, a function result variable”.23

[107:20+ C579+] Editor: Insert a new constraint:24

C579a (R551) An object-name shall not be an acceptor variable.25

[109:24 5.5p4] Editor: Add a sentence at the end of the paragraph: “An explicit type specification in26

an ACCESSOR statement overides an IMPLICIT statement for the name of the result variable of the27

function part of that accessor subprogram and the acceptor variable of the updater part of that accessor28

subprogram.”29

[117:3+ R601] Editor: Insert an additional alternative for syntax rule R601 designator :30

or accessor-reference31

[117:8+ R601] Editor: Insert an additional alternative for syntax rule R601 designator :32

14 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

or section-part-designator1

[120:13-] Editor: Insert a new subclause:2

6.4.4a Parts of objects of type section3

R615a section-part-designator is designator % LBOUND4

or designator % UBOUND5

or designator % STRIDE6

621a (R615a) The designator shall be of type section.7

The type of section-part-designator is integer with the same kind as designator .8

If section-part-designator is designator%LBOUND it designates the lower bound part. If it is designa-9

tor%UBOUND it designates the upper bound part. If it is designator%STRIDE it designates the stride10

part.11

In a reference, if section-part-designator is designator%LBOUND, a reference to the intrinsic func-12

tion LOWER BOUNDED(designator) shall not return false, and if section-part-designator is designa-13

tor%UBOUND, a reference to the intrinsic function UPPER BOUNDED(designator) shall not return14

false.15

NOTE 6.6a
In a variable-definition, context LOWER BOUNDED(designator) or UPPER BOUNDED(desig-
nator) may be true.

[125:15-16 6.5.4p3] Editor: Replace “reference to a function” by “function reference”.16

[146:14 7.1.6.1p2] Editor: After “d2” append “, or the function is the function part of an accessor and17

the ACCESSOR statement (12.3.2.1a) specifies one dummy argument d2”.18

[146:30 7.1.6.1p5] Editor: After “d2” append “, or the function is the function part of an accessor and19

the ACCESSOR statement (12.3.2.1a) specifies two dummy arguments, d1 and d2”.20

[150:5 7.1.11p1] Editor: before “a FUNCTION” insert “an ACCESSOR statement (12.6.2.1a) or”.21

[150:22 7.1.11p2(9)] Editor: delete “function” (it’s not needed to qualify “argument” in any of the other22

list items).23

[158:32-33 C729] Editor: After “dummy” insert “accessor or”; after “external” insert “accessor or”.24

[159:3+ C730+] Editor: Insert a new constraint:25

C729a (R738, R740) If procedure-name or proc-component-ref is an accessor, proc-pointer-object shall26

have explicit interface.27

[175:14 C816] Editor: Before “end-function-stmt” insert “end-accessor-stmt , ”.28

[175:27 C818] Editor: Before “end-function-stmt” insert “end-accessor-stmt , ”.29

[181:4 C828] Editor: Before “end-function-stmt” insert “end-accessor-stmt , ”.30

c© ISO/IEC 2010 – All rights reserved 15

ISO/IEC TR 99999:2010(E)

[218:1- Note 9.34+] Editor: Insert a list item:1

• A list item of SECTION type shall be processed by a defined input/output procedure (9.6.4.8).2

Unresolved Technical Issue UTI 1

List items of SECTION type are processed by a defined input/output procedure to avoid discussing
what to do about the cases of .not. LOWER_BOUNDED (expr) and .not. UPPER_BOUNDED (
expr)

[223:23 9.6.4.8.1p1] Editor: Before “objects” insert “or SECTION type”.3

[224:17+ R921+] Editor: Add an alternative for R921 dtv-type-spec:4

or SECTION [kind-selector]5

[228:6 9.6.4.8.4p2] Editor: Replace “derived-type” by “derived type or SECTION type”.6

[271:3 11.1p1] Editor: Before “MODULE” insert “ACCESSOR, ”.7

[272:9 R1108] Editor: Add an alternative for R1108:8

R1108 module-subprogram is accessor-subprogram9

or function-subprogram10

[277:7 12.1p2] Editor: After “FUNCTION” insert “, ACCESSOR”.11

[277:12 12.2.1p1] Editor: Replace “a function or a subroutine” by “an accessor, a function, a subroutine,12

or an updater”.13

[277:15 12.2.1p1] Editor: Append a sentence at the end of the paragraph:14

“A reference to an updater appears as a reference to an accessor in a variable definition context.”15

[277:28 12.2.2p4] Editor: Replace “a procedure for the SUBROUTINE or FUNCTION statement” by16

“a subroutine procedure for its SUBROUTINE statement, a function procedure for its FUNCTION17

statement, or defines a function procedure and an updater procedure for its ACCESSOR statement”.18

[278:9 12.3.1p1] Editor: Replace “function or subroutine” by “function, subroutine, or updater”.19

[278:11 12.3.1p1] Editor: Replace “and” by a comma. Append a new clause at the end of the sentence:20

“, and the characteristics of its acceptor variable if it is an updater”.21

[278:28+ 12.3.3-] Editor: Insert a new subclause:22

“12.3.2a Characteristics of acceptors23

Acceptor variables are considered to be dummy data objects.”24

[279:13 12.4.2.1p1] Editor: Replace “subroutine or a function” by “subroutine, a function”. After “result25

name” insert “, or an updater with a separate acceptor variable name”.26

[279:23+ 12.4.2.2p1(2)+] Editor: Insert a list subitem:27

16 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

“(a′) is a dummy accessor procedure,”1

[279:33+ 12.4.2.2p1(4-5)] Editor: Delete “or” on item (4), replace the period at the end of item (5) by2

“, or”, and insert a list subitem:3

“(6) the procedure is defined by an accessor subprogram.”4

[280:4 12.4.3.1p1] Editor: Before “FUNCTION” insert “ACCESSOR, ”.5

[280:21+] Editor: Add an additional alternative for interface-body :6

or accessor-stmt7

[specification-part]8

function-part-stmt9

[specification-part]10

updater-part-stmt11

[specification-part]12

end-accessor-stmt13

[281:2 C1203] Editor: Replace “or” by a comma. Before “shall” insert “, or the accessor-name in the14

accessor-stmt”.15

[281:18-19 12.4.3.2p3] Editor: Replace “or” by a comma; after “subroutine-stmt” insert “, or the accessor-16

name in the accessor-stmt”.17

[283:9 12.4.3.4.1p2] Editor: After “function” insert “or accessor”.18

[283:15 12.4.3.4.1p4] Editor: After “functions” insert “or accessors”.19

[284:8 12.4.3.4.2p1] Editor: Replace “function” by “dummy”.20

[284:11-14 12.4.3.4.2p2] Editor: Delete “function’s”. Delete “of the function”.21

[286:3 12.4.3.4.5p3] Editor: After “functions” insert “or accessors”.22

[286:5 12.4.3.4.5p3] Editor: After “function” insert “or accessor” twice.23

[286:15 C1215] Editor: Replace “or both be functions” by “, or both be functions or accessors”.24

[286:38 12.4.3.4p5] Editor: After “functions” insert “or accessors,”.25

[287:35+ C1222+] Editor: Insert a new constraint:26

C1222a (R1216) If initial-proc-target is an accessor its interface shall be explicit, and the interface of27

proc-entity-name shall be explicit. The interfaces of initial-proc-target and proc-entity-name28

shall specify the same characteristics.29

[288:8+ 12.4.3.6p4+] Editor: Insert a new note30

NOTE 12.13a
The interface of an accessor is required to be explicit where it is referenced or used as a procedure
pointer target, and the interface of a procedure pointer is required to be explicit where it is
associated with an accessor.

c© ISO/IEC 2010 – All rights reserved 17

ISO/IEC TR 99999:2010(E)

[289:13+ 12.5.1] Editor: Insert new syntax rules and constraints, and a new paragraph:1

R1218a accessor-reference is procedure-designator [actual-args] [(aux-actual-arg)]2

R1218b actual-args is ([actual-arg-spec-list])3

R1218c aux-actual-arg is actual-arg-spec4

C1223a (R1218a) The procedure-designator shall designate an accessor.5

Unlike a reference to a function, if an accessor name appears without either actual-args or aux-actual-6

arg it nonetheless specifies invocation of the accessor unless it is an actual argument associated with a7

dummy procedure, or a proc-target in a pointer assignment statement. For this reason, a procedure shall8

have explicit interface where it is invoked if it has a dummy accessor procedure argument.9

NOTE 12.15a
If a dummy argument is a dummy accessor procedure, it is not possible to invoke the associated
actual argument before or after invoking the procedure. It is not sensible to do so because the only
possible use would be to return a procedure pointer. The acceptor variable of an updater cannot
be a pointer, and therefore not a procedure pointer, and therefore the result of the function cannot
be a procedure pointer.

[291:3 12.5.2.1p1] Editor: Replace “either a subroutine reference or a function reference” by “a reference10

to a subroutine, function or accessor”.11

[292:10 12.5.2.2p1] Editor: Replace “function-reference” by “accessor-reference, function-reference, or”12

[302:2 12.5.3p1] Editor: Replace “a function-reference or by” by “an accessor reference, a function-13

reference, or”.14

[302:5 12.5.3p1] Editor: Replace “The characteristics” by “If the function is defined by an accessor15

the characteristics of the function result (12.3.3) are determined by the interface of the accessor and16

additional specifications, if any, of the function result variable; otherwise, the characteristics”.17

[302:18+ 12.5.4p1+] Editor: Insert new subclauses:18

12.5.4a Updater reference19

An updater is invoked when an accessor-reference appears in a variable definition context. The value20

to be accepted is considered to be an actual argument associated with the acceptor variable. When an21

updater is invoked, all actual argument expressions are evaluated, then the arguments are associated,22

and then the updater is executed. When the actions specified by the updater are completed the value in23

the variable definition context has been accepted. The characteristics of the acceptor are determined by24

the interface of the accessor that defines the updater. In a reference to an elemental updater, all array25

arguments shall have the same shape.26

12.5.4b Accessor reference as an actual argument27

When a subroutine, function, or updater is invoked, if any dummy argument that does not have IN-28

TENT(OUT) corresponds to an accessor reference, the function specified by the accessor is invoked to29

evaluate the actual argument to be associated with the dummy argument before the procedure is exe-30

cuted. If any dummy argument that does not have INTENT(IN) corresponds to an accessor reference,31

the updater specified by the accessor is invoked to accept the value of the dummy argument after the32

procedure completes execution and before a branch resulting from an alternate return occurs.33

18 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

[303:38-39 12.5.5.2p4] Editor: Replace “a function name” by “an accessor name or a function name,”1

[304:14 12.5.5.4p2] Editor: Replace “a function ” by “an accessor or a function,”2

[305:20 12.6.2.1p1] Editor: Replace “or FUNCTION” by “, ACCESSOR, or FUNCTION”.3

[305:23 12.6.2.1p2] Editor: Replace “or FUNCTION” by “, ACCESSOR, or FUNCTION”.4

[305:35 C1247] Editor: Replace “function-stmt” by “accessor-stmt , function-stmt”.5

[306:12+ 12.6.2.1+] Editor: Insert a new subclause:6

12.6.2.1a Accessor subprogram7

1 An accessor is a subprogram that consists of two subprograms, a function and an updater, that have the8

same name. The abstract interfaces of the function and updater are identical, except that the acceptor9

variable of an updater cannot be a pointer or allocatable. An important addition to the syntax of an10

accessor definition is aux-dummy-arg-name, which allows a reference to have a syntax that is compatible11

with character substring reference.12

R1226a accessor-subprogram is accessor-stmt13

[specification-part]14

function-part15

updater-part16

[internal-subprogram-part]17

end-accessor-stmt18

R1226b accessor-stmt is [prefix] ACCESSOR accessor-name19

([dummy-arg-name-list]) [(aux-dummy-arg-name)]20

R1226c end-accessor-stmt is END [ACCESSOR [accessor-name]]21

R1226d aux-dummy-arg-name is dummy-arg-name22

R1226d function-part is function-part-stmt23

[specification-part]24

[execution-part]25

26

R1226e updater-part is updater-part-stmt27

[specification-part]28

[execution-part]29

30

R1226f function-part-stmt is FUNCTION PART [RESULT (result-name)]31

R1226g updater-part-stmt is UPDATER PART [ACCEPT (acceptor-name)]32

C1251a (R1226b) If aux-dummy-arg-name appears it shall be scalar, have INTENT(IN), and be of type33

SECTION.34

C1251b (R1226f) If RESULT appears, result-name shall not be the same as accessor-name, and no35

attributes other than the ALLOCATABLE or POINTER attributes shall be specified for the36

c© ISO/IEC 2010 – All rights reserved 19

ISO/IEC TR 99999:2010(E)

result-name in the scoping unit of the function part of the accessor.1

C1251c (R1226g) If ACCEPT appears, acceptor-name shall not be the same as accessor-name, and2

no attributes other than the VALUE and INTENT(IN) attributes shall be specified for the3

acceptor-name in the scoping unit of the updater part of the accessor.4

C1251d (R1226a) An ENTRY statement shall not appear within the accessor.5

C1251e (R1226a) An internal accessor subprogram shall not contain an internal-subprogram-part .6

C1251f (R1226c) If accessor-name appears in the end-accessor-stmt , it shall be identical to the accessor-7

name specified in the accessor-stmt .8

C1251g (R1226a) The acceptor variable name shall not be specified to have the ALLOCATABLE or9

POINTER attribute within the scoping unit of the accessor or the scoping unit of the updater10

part of the accessor.11

C1251h (R1226a) No characteristic of the function or updater subprograms defined by the accessor,12

except whether the result of the function has the ALLOCATABLE or POINTER attribute, shall13

be specified within the specification-part of the scoping unit of the function part or updater part14

of the accessor.15

2 The name of the accessor is accessor-name.16

3 The type and type parameters of the accessor name may be specified by a type specification in the17

ACCESSOR statement or by the accessor name appearing in a type declaration statement in the18

specification-part of the scoping unit of the accessor subprogram. They shall not be specified both19

ways. If they are not specified either way, they are determined by the implicit typing rules in force20

within the scoping unit of the accessor. If the accessor is an array, this shall be specified by specifi-21

cations of the name of the accessor within the scoping unit of the accessor. If the result variable is a22

pointer or allocatable, this shall be specified by specifications of the name of the result variable within23

the scoping unit of the function part of the accessor.24

4 The acceptor variable is considered to be a dummy argument. It has all the attributes specified for25

the accessor name. Unless the VALUE attribute is specified for it within the updater part, it has26

the INTENT(IN) attribute, and this may be confirmed by explicit specification. The result variable27

has all the attributes specified for the accessor name. Within the function part, the POINTER or28

ALLOCATABLE attribute may be specified for it. The specifications of the result and acceptor variable29

attributes, the specification of dummy argument attributes, and the information in the ACCESSOR30

statement, collectively define the characteristics of the accessor (12.3.1).31

NOTE 12.40a
An acceptor variable cannot be a pointer or allocatable.

5 If RESULT appears, the name of the result variable of the function part of the accessor is result-name32

and all occurrences of the accessor name in execution-part statements in the scoping unit of the function33

part of the accessor refer to the accessor itself. If RESULT does not appear, the result variable name34

is accessor-name and all occurrences of the accessor name in execution-part statements in the scoping35

unit of the function part of the accessor are references to the result variable.36

6 If ACCEPT appears, the name of the acceptor variable of the updater part is acceptor-name and all37

occurrences of the accessor name in execution-part statements in the scoping unit of the updater part38

refer to the accessor itself. If ACCEPT does not appear, the acceptor variable name is accessor-name39

and all occurrences of the accessor name in execution-part statements in the scoping unit of the updater40

part are references to the acceptor variable.41

20 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

7 The characteristics (12.3.3) of the result of the accessor where it is referenced to produce the value of1

a primary within an expression are the characteristics of the result variable. The characteristics of the2

accessor where it is referenced in a variable definition context are the characteristics of the acceptor3

variable.4

[306:14 12.6.2.2p1] Editor: Before “FUNCTION” insert “FUNCTION PART statement (12.6.2.1a) or”.5

[308:17+ 12.6.2.3+] Editor: Insert a new subclause:6

12.6.2.3a Updater subprogram7

An updater subprogram is a subprogram that has an UPDATER PART statement (12.6.2.1a) as its first8

statement.9

[309:6 12.6.2.5p1] Editor: Before “function-subprogram” insert “by an accessor-subprogram whose initial10

statement contains the word MODULE,”.11

[309:10 R1237] Editor: Replace the first line of R1237 separate-module-subprogram:12

R1237 separate-module-subprogram is mp-subroutine-or-function13

or mp-accessor14

R1237a mp-subroutine-or-function is mp-subprogram-stmt15

[309:14+ R1237+] Editor: Add a syntax rule to define mp-accessor :16

R1237b mp-accessor is mp-subprogram-stmt17

[specification-part]18

function-part19

updater-part20

[internal-subprogram-part]21

end-accessor-stmt22

[309:21+ C1263+] Editor: Insert an additional constraint:23

C1263a (R1237b) A separate-module-subprogram shall be mp-accessor if and only if the procedure-name24

in its mp-subprogram-stmt has been declared to be an accessor.25

[312:16 C1276] Editor: Before “function” insert “accessor or”.26

[312:17+ 12.7p2+] Editor: Insert a note:27

NOTE 12.46a
If an accessor subprogram is pure, the function and updater subprograms it defines are pure.

[313:15 12.8.1p2] Editor: Insert a note before “The following additional. . . :28

NOTE 12.50a
If an accessor subprogram is elemental, the function and updater subprograms it defines are ele-
mental.

[314:14 12.8.3p1] Editor: Delete the first sentence: “An elemental subroutine. . . actual arguments”29

because its first part repeats C1289, and its second part doesn’t say anything new.30

c© ISO/IEC 2010 – All rights reserved 21

ISO/IEC TR 99999:2010(E)

[314:20+ 12.8.3+] Editor: Insert a new subclause:1

12.8.4 Elemental updater actual arguments2

An elemental updater has only scalar dummy arguments, but may have array actual arguments. All3

actual arguments shall be conformable. If an actual argument is an array the effect is the same as would4

be obtained if the updater were applied separately, in array element order, to corresponding elements of5

each array actual argument.6

NOTE 12.51
The acceptor value is considered to be a dummy argument. The value to be accepted is considered
to be an actual argument.

[319 Table 13.1] Editor: Insert three list items in Table 3.1 in alphabetical order:7

LOWER BOUNDED (A) E Query whether a lower bound is speci-
fied for a section

SECTION AS ARRAY (A) T An array having elements defined by a
section

UPPER BOUNDED (A) E Query whether an upper bound is spec-
ified for a section

[364:18+ 13.7.102+] Editor: Insert a subclause:8

13.7.102a LOWER BOUNDED (A)9

Description. Whether a lower bound is specified for a section.10

Class. Elemental function.11

Argument. A shall be of type SECTION.12

Result Characteristics. Default logical.13

Result Value. The result value is true if and only if A has a lower bound.14

[384:16+ 13.7.144+] Editor: Insert a subclause:15

13.7.144a SECTION AS ARRAY (A)16

Description. An array having element values of all elements of a section.17

Class. Transformational function.18

Argument. A shall be a scalar of type SECTION. Neither LOWER BOUNDED(A) nor UPPER -19

BOUNDED(A) shall be false. The value of A%STRIDE shall not be zero.20

Result Characteristics. Rank one array of type integer and the same kind as A. The size of the result21

is the number of elements denoted by the section, which is MAX(0, (A%UBOUND − A%LBOUND +22

A%STRIDE) / A%STRIDE).23

Result Value. The result value is the same as the expression [(I, I = A%LBOUND, A%UBOUND,24

A%STRIDE)] where I is an integer of the same kind as A.25

22 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

NOTE 3.1
The description of the result value makes it clear that SECTION AS ARRAY is not really needed;
it is pure syntactic sugar.

Examples. The value of SECTION AS ARRAY (5:1:-2) is [5, 3, 1]. The value of SECTION AS AR-1

RAY (5:1:2) is [] and the size of the result value is zero.2

[395:4+ 13.7.173+] Editor: Insert a subclause:3

13.7.173a UPPER BOUNDED (A)4

Description. Whether an upper bound is specified for a section.5

Class. Elemental function.6

Argument. A shall be of type SECTION.7

Result Characteristics. Default logical.8

Result Value. The result value is true if and only if A has an upper bound.9

[425:8+ 15.1p1+] Editor: Insert a note:10

NOTE 15.0a
Accessors are not interoperable.

[441:20+ 16.3.3p1+] Editor: Insert a paragraph and subclause:11

For each FUNCTION PART statement there is a result variable. If there is no RESULT clause, the12

result variable has the same name as the accessor subprogram containing the function being defined;13

otherwise the result variable has the name specified in the RESULT clause.14

16.3.3a Updater acceptor variables15

For each UPDATER PART statement there is an acceptor variable. If there is no ACCEPT clause, the16

acceptor variable has the same name as the accessor subprogram containing the updater being defined;17

otherwise the acceptor variable has the name specified in the ACCEPT clause.18

[441:17-20 16.3.3] Editor: In lieu of the previous edit, delete subclause 16.3.3 because it duplicates19

12.6.2.2p4 [307:12-20], the new paragraph in 16.3.3 would duplicate 12.6.2.1a paragraph 5, and 16.3.3a20

would duplicate 12.6.2.1a paragraph 6.21

[444:14 16.5.1.4p2(10)] Editor: Before “in a function-stmt” insert “in an accessor-stmt ,”22

[444:15+ 16.5.1.4p2(11+)] Editor: Replace “in a function-stmt” by “in an accessor-stmt , in a function-23

stmt , in a function-part-stmt ,”.24

[444:15 16.5.1.4p2(11+)] Editor: Insert a list item:25

“(11a)an acceptor-name in an accessor-stmt or updater-part-stmt ,”26

c© ISO/IEC 2010 – All rights reserved 23

