We need a way to run things asynchronously within an address space.There are lots of
use cases for this, one of which is running po concurrent regions on GPUs.

Summary

Starting in Fortran 2008, Fortran supports two forms of parallelism:

1. po concurrenT, Which supports loop-level data parallelism.
2. coarrays, which is form of PGAS.

This document will describe a third form of parallelism and argue that it should be
supported by the Fortran language.

The third form of parallelism is shared-memory task parallelism, which supports a range
of use cases not easily covered by 1 and 2.

Background Reading

The reader may wish to consult the following for additional context on this topic:

e Patterns for Parallel Programming by Timothy G. Mattson, Beverly Sanders and
Berna Massingill

Task Parallelism By Example from the Chapel Project (Slides)

OpenMP Tasking Explained by Ruud van der Pas (Slides)

OpenMP Tasking by Christian Terboven and Michael Klemm (Slides)

The Problem with Threads by Edward A. Lee (Paper)

Motivating Example

Consider the following Fortran program:

module numerot
contains

pure real function yksi(X)
implicit none
real, intent(in) :: X(100)
lreal, intent(out) :: R
yksi = norm2(X)

end function yksi

pure real function kaksi(X)

https://en.wikipedia.org/wiki/Partitioned_global_address_space
https://chapel-lang.org/tutorials/SC14/SC14-4-Chapel-TaskPar.pdf
https://openmp.org/wp-content/uploads/sc13.tasking.ruud.pdf
https://www.openmp.org/wp-content/uploads/sc15-openmp-CT-MK-tasking.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

implicit none
real, intent(in) :: X(100)
kaksi = 2*norm2(X)

end function kaksi

pure real function kolme(X)
implicit none
real, intent(in) :: X(100)
kolme = 3*norm2(X)

end function kolme

end module numerot

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC

A=1
B=1
c=1

RA
RB
RC

yksi(A)
kaksi(B)
kolme(C)

print*,RA+RB+RC
end program main

Assuming that yksi, kaksi, kolme Share no state, then all three functions can execute
concurrently. How would we implement this in Fortran 20187

One way is to use coarrays and assign each function to a different image:

program main
use numerot
implicit none
real :: A(100), B(100), C(100)

real :: R
A=1
B=1
c=1

if (num_images().ne.3) STOP

if (this_image().eq.1l) R = yksi(A)
if (this_image().eq.2) R = kaksi(A)
if (this_image().eq.3) R = kolme(A)

SYNC ALL()

call co_sum(R)

if (this_image()) print*,R
end program main

While this works, this approach has many shortcomings. First, there is no way to share
data directly between images - data must be explicitly copied using coarray operations.
Second, images exist throughout the lifetime of the program (unless they fail) and thus
the amount of parallelism is restricted to what is specified at runtime. Third, if there are
many functions that can execute concurrently, many more than the number of images
(which are likely to be processor cores or similar), then either the system will be
oversubscribed or the user needs to implement scheduling by hand.

Dynamic load-balancing is nontrivial and should not be delegated to application
programmers in most cases.

Another way to implement this program is to use po CONCURRENT:

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC
integer :: k

A
B
C

1
1
1

do concurrent (k=1:3)

if (k.eq.1) RA = yksi(A)
if (k.eq.2) RB = kaksi(B)
if (k.eq.3) RC = kolme(C)
end do
print*,RA+RB+RC

end program main

This could work if the external functions are declared pure, but bo coNcurRRENT provides no
means for dynamic load-balancing. The bigger problem is that Fortran implementations
cannot agree on what form of parallelism po concurrent uses. Some implementations will
use threads while others will use vector lanes. The latter is going to be useless for most
purposes. Finally, the above is ugly and tedious - no one wants to write code like that to
execute independent tasks.

The OpenMP/OpenACC Solution

There is a proven solution for Fortran task parallelism in OpenMP (4.0 or later) or
OpenACC:

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC

A=1
B=1
c=1

I$omp parallel
I$omp master

I$omp task
RA = yksi(A)
I$omp end task

I$omp task
RB = kaksi(B)
I$omp end task

I$omp task
RC = kolme(C)
I$omp end task

I$omp end master
I$omp end parallel

print*,RA+RB+RC
end program main

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC

A=1
B=1
c=1

I$acc async
RA = yksi(A)
I$acc end async

I$acc async
RB = kaksi(B)
I$acc end async

I$acc async
RC = kolme(C)
I$acc end async

I$acc async wait

print*,RA+RB+RC
end program main

These programs will execute regardless of the available hardware parallelism, including
sequentially. OpenMP tasking is more powerful in some use cases than OpenACC, by
allowing the user to create dependencies between tasks, which forces the runtime to do
more work when scheduling.

This feature - tasks with dependencies - is not proposed for Fortran.

The Proposal for Fortran

Because OpenMP independent tasks is implemented in essentially all of the Fortran
2008 compilers, it is reasonable to assume that the design is portable. The goal here is
to design a language feature for Fortran that is consistent with its existing semantics
and syntax.

We consider the BLock construct to be an appropriate starting point, because it defines a
scope, and scoping data is an essential part of defining task parallelism. Because we
need more than just data scoping, we use the keyword task_block to tell the
implementation that execution concurrency is both permitted and desirable.

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC

A=1

B=1

c=1
task_block
RA = yksi(A)

end task_block
task_block

RB = kaksi(B)
end task_block

task_block

RC = kolme(C)
end task_block

task_sync all

print*,RA+RB+RC
end program main

Non-trivial data issues

Obviously, very few programs can exploit concurrency where all data is strictly private.
In po concurrent, locality specifiers are used to inform the implementation about whether
data is shared, etc. (See this or this for details.)

Below we modify our program as if each function used a private scratch buffer. This is
not the best way to allocate X, since X could be defined inside of the task_block scope or
inside of the external function, but this is just an illustration of the syntax. We also add T,
which could be a read-only lookup table, for example.

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC
real :: X(10)
real :: T(1000)

A=1
B=1
c=1

task_block local(X) shared(T)
RA = yksi(A,X)
end task_block

task_block local(X) shared(T)
RB = kaksi(B,X)
end task_block

task_block local(X) shared(T)
RC = kolme(C,X)
end task_block

task_sync all

print*,RA+RB+RC
end program main

https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/c-to-d/do-concurrent.html

Much like po concurrent, we should be able to write a fully explicit version using
default(none).

program main
use numerot
implicit none
real :: A(100), B(100), C(100)
real :: RA, RB, RC
real :: X(10)
real :: T(1000)

A=1
B=1
c=1

task_block local_init(A) shared(RA) local(X) shared(T)
RA = yksi(A,X)
end task_block

task_block local_init(B) shared(RB) local(X) shared(T)
RB = kaksi(B,X)

end task_block

task_block local_init(C) shared(RC) shared(T)

RC = kolme(C,X)

end task_block

task_sync all

print*,RA+RB+RC
end program main

It might make sense to have a new locality specifier, 10cal_final but since there might
have been a reason why that was not added for bo concurrenT, we use the shared specifier
to the result of this function.

Dependencies

Many applications where task parallelism will be used have dependencies between
tasks.

For example, in our program, we can add a fourth function na1ja that depends on

yksi and kaksi.

program main
use iso_fortran_env, only : task_depend_kind
use numerot

implicit none

real :: A(100), B(1e0), C(100)
real :: RA, RB, RC

real :: X(10)

real :: T(1000)
type(task_depend_kind) :: DEP

A
B
C

1
1
1

task_block depends_to(DEP)
RA = yksi(A)
end task_block

task_block depends_to(DEP)
RB = kaksi(B)
end task_block

task_block
RC = kolme(C)
end task_block

task_block depend_from(DEP)
RD = nalja(RA,RB)
end task_block

task_sync all

print*,RC+RD
end program main

This syntax may not be ideal but it expresses the concept. In OpenMP, dependencies
are expressed in the form of memory locations. Because this might be harder to
implement in some scenarios, we propose an explicit opaque type that the
implementation can use.

Known Shortcomings

Fortran lacks a memory model in the way that Java, C11 and C++11 do. We do not take
a position on whether that is a good or bad thing, but instead attempt to make the
fewest changes required to address hazards of concurrent data access by tasks. One
obvious solution for tasks is to reuse the coarray atomic operations, although this may
not be acceptable to the committee. However, requiring that tasks use atomic
operations to access data that may be modified by another task is a straightforward
solution to these hazards. Unfortunately, the overhead of coarray atomics may be

higher than acceptable for shared-memory uses, in which case a new syntax is
required.

Acknowledgements
Thanks to the following people, who read this proposal or related material and may

have provided feedback:

e Ondrej Certik
e Jeff Larkin

