
	**-001

	
	

	
	
	ISO/IEC 10646 is not cited normatively in the text
	Please move to the bibliography, otherwise, cite it normatively. Please refer to ISO/IEC Directives, Part 2, Table 3 for a list of the verbal forms used in ISO deliverables to cite a reference normatively (shall)
	

	**-002

	
	

	
	
	ISO/IEC 9899:2018 is not cited normatively in the text
	Please move to the bibliography, otherwise, cite it normatively. Please refer to ISO/IEC Directives, Part 2, Table 3 for a list of the verbal forms used in ISO deliverables to cite a reference normatively (shall)
	

	**-003

	
	

	
	
	ISO/IEC 646:1991 is not cited normatively in the text
	Please move to the bibliography, otherwise, cite it normatively. Please refer to ISO/IEC Directives, Part 2, Table 3 for a list of the verbal forms used in ISO deliverables to cite a reference normatively (shall)
	

	**-004

	
	

	
	
	π
	It must be upright when it used to express the value of “pi”
	

	**-005

	
	

	
	
	This document was reviewed by an ISO CS editor to ensure conformity with ISO/IEC Directives, Part 2 (henceforth DP2, available at https://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype).
	
	

	US-006

	pg. xiii;
	

	
	ed
	
Editorial corrections to the DIS
Reference
	Introduction, Intrinsic procedures, sentence about SPLIT, "at time" -> "at a time".
	

	**-007

	
	3

	
	
	Self-referencing is not allowed in a definition.
Several definitions refer to “this document”; e.g. 3.93, 3.93.1, 3.93.2, 3.133, 3.148.8…
	Move the references to this document to notes to entry
	

	**-008

	
	3

	
	
	A definition must be able to replace its term in the text. The following cannot and must thus be rephrased: 3.41, 3.42, 3.52, 3.53, 3.62, 3.74, 3.93.1, 3.93.2, 3.150, (e.g. change to “without a valid value”, 3.151, 3.154 (without the save attribute),
	
	

	**-009

	
	3

	
	
	Including an application domain in angle brackets is only allowed when a given term is defined more than once in Clause 3 to specify its context of occurrence. The following terms are defined only once, yet they use angle brackets indicating the application domain. The content in angle brackets can be moved to the actual definition:
3.12, 3.19, 3.36, 3.59, 3.80, 3.88, 3.92, 3.93.1, 3.93.2, 3.110, 3.111, 3.129, 3.130, 3.146.3, 3.148.7, 3.148.10
	Please delete angle brackets.
	

	**-010

	
	3

	
	
	The following are not actual definitions [e.g. in some cases, it is has if a habitation was defined as a “house or apartment” rather than saying that it is a space in which people live (which can be among other things a house or an apartment)]:
3.7, 3.7.6, 3.13, 3.18, 3.20 (the definition must start with a noun), 3.23 (users of the OBP do not have access to 15.3.2.2), 3.22 (the definition must be able to replace the term in the text, which is not the case here. Also, the definition is unclear), 3.24 (users of the OBP do not have access to 15.3.2.3), 3.25 (users of the OBP do not have access to 15.3.3), 3.26 (users of the OBP do not have access to 15.3.1), 3.38.2, 3.39, 3.40 (besides, users of the OBP do not have access to 10.1.12, that is why definitions must not rely on the content of clauses of a given standard), 3.58, 3.59, 3.60.2, 3.60.3, 3.63, 3.67, 3.75, 3.91, 3.93.1, 3.93.2, 3.97, 3.116, 3.120, 3.126, 3.129, 3.134.1, 3.138, 3.143

	Please provide real definitions, i.e. a sentence explaining the term, or delete.
	

	**-011

	
	3

	
	
	Circular definitions, which repeat the term being defined, are not allowed. Please rephrase definition so it is not circular or delete term entry.
If a definition is circular, it means that the term is self-explanatory and that there is no need for a definition.
The following definitions are circular:
3.2, 3.3.1, 3.3.2, 3.3.5, 3.3.7, 3.7.7, 3.7.8, 3.7.9, 3.8, 3.34.1 (what is a direct component then?), 3.34.3, 3.34.5, 3.50, 3.55, 3.56, 3.63.1, 3.63.2, 3.66.1, 3.66.2, 3.66.3, 3.66.5, 3.66.6, 3.70, 3.72, 3.74, 3.80, 3.81, 3.90.3, 3.95, 3.108.1, 3.108.2, 3.106, 3.108, 3.112.1, 3.112.3, 3.112.5, 3.112.6, 3.121, 3.121.3, 3.127. 3.134.2, 3.135, 3.140.1, 3.141, 3.148.1, 3.148.5, 3.148.6, 3.148.12.1

	Please rephrase the definition without using the term being defined, or delete term entry.
	

	**-012

	
	3

	
	
	The cross-references to terms within clause 3 are done incorrectly, they are not in accordance with DP2, e.g.

When cross-referencing a term in Clause 3, please put the term in italics and add the term entry number:
This hyperlink must be added to “3.46”, not to the word.

3.45
data entity
data object (3.46), result of the evaluation of an expression, or the result of the execution of a function reference
	Please correct throughout clause 3
	

	**-013

	
	3

	
	
	Most of the definitions include cross references to other clauses in the document, which is not allowed in ISO documents, e.g.

	Please move the cross references to other clauses in the document to notes to entry, e.g.:
3.38.2
named constant
named data object

Note 1 to entry: See 8.5.13.

Please correct the whole of Clause
	

	**-014

	
	3

	
	
	The boilerplate text in Claus 3 has been updated. Please use the new boilerplate text
	For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
—	ISO Online browsing platform: available at https://www.iso.org/obp
—	IEC Electropedia: available at https://www.electropedia.org/

	

	**-015

	
	3.102

	
	
	that are to be
	“are to be” expresses requirements in ISO deliverables, which is not allowed in a definition. Please change to “that are intended to be”
	

	**-016

	
	3.104

	
	
	The format of the term entry is incorrect.
	Please correct as follows:

3.104
NaN
Not a Number
symbolic floating-point datum

Note 1 to entry: (ISO/IEC/IEEE 60559:2020)
	

	**-017

	
	3.114

	
	
	In 3.114 “not completely specified in this document” cannot be in the definition.
	Please move to note to entry.
	

	**-018

	
	3.148.6

	
	
	Please replace “may” with “can” as a definition cannot express permission
	
	

	**-019

	
	3.32, 3.32.01, 3.7.5, 3.22, 3.32, 3.32.1, 3.63, 3.90.2, 3.100

	
	
	The font size is incorrect
	Please use the correct font size, i.e. 11
Please check and correct the rest of Clause 3.
	

	**-020

	
	3.33

	
	
	A definition cannot express a permission
	Please replace “may” with “can” in the definition or delete.
	

	**-021

	
	3.44

	
	
	Why is there “(R927)” at the beginning of the definition?
	Please delete or move to note to entry.
	

	**-022

	
	3.91.2

	
	
	“are to be”
	“are to be” = shall in ISO deliverables. A definition cannot express a requirement, please change to, e.g. “that are given”.
	

	US-023

	pg. 27;
	4.3.3;

	P3+;
	te
	The requirements on the TARGET argument of ASSOCIATED are wrong, leading to a contradiction in the standard. The proposed change reword them to be “how we intended” (i.e. retain backwards compatibility, and do the obviously-right thing for new cases). For data pointers that are not assumed-rank, require the rank to be the same.
Reference:

	[27] 4.3.3 Fortran 2018 compatibility, p3+
(before the "different interpretation" paragraph)
Insert new paragraph
"Fortran 2018 permitted the POINTER and TARGET arguments to the intrinsic function ASSOCIATED to have different rank; this document does not permit such usage."

	

	US-024

	pg. 29;
	4.3.4

	P13+
	te
	The requirements on the TARGET argument of ASSOCIATED are wrong, leading to a contradiction in the standard. The proposed change reword them to be “how we intended” (i.e. retain backwards compatibility, and do the obviously-right thing for new cases). For data pointers that are not assumed-rank, require the rank to be the same.
Reference:

	[29] 4.3.4 Fortran 2008 compatibility, p13+
(before the "different interpretation" paragraph)
Insert new paragraph
"Fortran 2008 permitted the POINTER and TARGET arguments to the intrinsic function ASSOCIATED to have different rank; this document does not permit such usage."

	

	**-025

	
	4.3.4, 4.3.7, 4.38 (2 occurrences)

	
	
	“Annex B.2”, “Annex B.1”, is an incorrect of referring to a first-level clause is an annex
	Please change to “Clause B.2”, “Clause B.1”,
	

	US-026

	pg. 29;
	4.3.5;

	P11+;
	te
	The requirements on the TARGET argument of ASSOCIATED are wrong, leading to a contradiction in the standard. The proposed change reword them to be “how we intended” (i.e. retain backwards compatibility, and do the obviously-right thing for new cases). For data pointers that are not assumed-rank, require the rank to be the same.
Reference:

	
[29] 4.3.5 Fortran 2003 compatibility, p11+
(before the "different interpretation" paragraph)
Insert new paragraph
"Fortran 2003 permitted the POINTER and TARGET arguments to the intrinsic function ASSOCIATED to have different rank; this document does not permit such usage."

	

	**-027

	
	5.5.7

	
	
	
	Please add missing reference
	

	US-028

	pg. 51, pg. 91, pg. 116;

	7.1.4,
7.6.2,
8.6.7;

	
	ed
	
Editorial corrections to the DIS
Reference
	Index "enumeration constructor" (as text, not the syntax term) on pages 54, 91 (definition), and 116.

	

	US-029

	pg. 54,
pg. 116;
	7.1.4,
 8.6.7;

	
	ed
	
Editorial corrections to the DIS
Reference
	Index "enum constructor" (text) on pages 54 and 116.

	

	GB-030

	1
	7.4.3.3

	C723
	te
	Named constants used in complex literal constants were intended to be scalar, but the description fails to specify this restriction.
	Change constraint C723 to read “Each named constant in a complex literal constant shall be scalar and of type integer or real.”
	

	GB-031

	5
	9.7.1.2

	Para 4
	te
	For the allocation of a coarray that is an ultimate component of a dummy argument, if the ultimate argument is an unsaved local variable of a recursive procedure, the execution of the ALLOCATE statement needs to be at the same depth of recursion on every active image in the current team. See J3/22-201.
	At the end of the sentence
"If the coarray is an ultimate component of a dummy argument, the ultimate arguments on those images shall be declared with the same name in the same scoping unit."
add
"; if the ultimate argument is an unsaved local variable of a recursive procedure, the execution of the ALLOCATE statement shall be at the same depth of recursion of that procedure on every active image in the current team".
	

	US-032

	pg 141
	9.7.1.2

	para 4
	te
	In interp F18/040 in N2205 the sentence "If the coarray is an ultimate component of a dummy argument, the ultimate arguments on those images shall be declared with the same name in the same scoping unit and if in a recursive procedure at the same depth of recursion." was passed for 9.7.1.2 Execution of an ALLOCATE statement. The words "and if in a recursive procedure at the same depth of recursion" at the end of the sentence were not included in N2203 (Corrigendum 2) or the DIS because something cannot be declared at a depth of recursion. However, in the case of unsaved local variable of a recursive procedure, the depth of recursion should be taken into account. An edit for the DIS is suggested.

Reference: PL22.3-2022-00086-m228-22-201.txt

	at the end of the sentence
"If the coarray is an ultimate component of a dummy argument, the ultimate arguments on those images shall be declared with the same name in the same scoping unit."
add
"; if the ultimate argument is an unsaved local variable of a recursive procedure, the execution of the ALLOCATE statement shall be at the same depth of recursion of that procedure on every active image in the current team".
	

	US-033

	pg. 166
	10.1.11

	para 7
	te
	The definition of a specification expression omits type, but there is a specification type that depends only on the type when it is a derived type with no type parameters: STORAGE_SIZE

Reference:
	[166] 10.1.11 Specification expression, p7, first sentence,
 change "a type parameter, array bound, or cobound"
 to "the type, a type parameter, an array bound, or a cobound",
 and change "the type parameter"
 to "the type, type parameter",

Making that whole first sentence read
 "If a specification expression includes a specification inquiry that depends on the type, a type parameter, an array bound, or a cobound of an entity specified in the same specification-part, the type, type parameter, array bound, or cobound shall be specified in a prior specification of the specification-part."

	

	GB-034

	1
	15.5.2.14

	NOTE 5
	te
	Because this revision of Fortran allows an allocatable component to have a coarray component, the note needs to refer to coarray potential subobject components. See J3/22-199.
	Change "ultimate components" to "potential subobject components".
	

	US-035

	pg 328
	15.5.2.14

	NOTE 5
	te
	
In the changes imported from Corrigendum 2, there are five places where what was "ultimate component" in coarray contexts in Fortran 2018 needs to be "potential subobject component" in Fortran 2023.
Reference:
	First sentence, change "ultimate component" to "potential subobject component" so that the sentence becomes "The exceptions to the aliasing restrictions for dummy arguments that are coarrays or have coarray potential subobject components enable cross-image access while the procedure is executing."
	

	GB-036

	1
	15.5.2.14

	Para 1, items (3) (e) and 4 (e)
	te
	Because this revision of Fortran allows an allocatable component to have a coarray component, the restriction needs to refer to a coarray potential subobject component. See J3/22-199.
	In both places, change "ultimate component" to "potential subobject component".
	

	US-037

	pg. 326;

	15.5.2.14;

	para 1, item(3);

	te
	
In the changes imported from Corrigendum 2, there are five places where what was "ultimate component" in coarray contexts in Fortran 2018 needs to be "potential subobject component" in Fortran 2023.
Reference:
	Change "ultimate component" to "potential subobject component" so that the item becomes
"Action that affects the value of the entity or any subobject of it shall be taken only through the dummy argument unless ..., or the dummy argument has a coarray potential subobject component and the action is a coindexed definition of the corresponding coarray by a different image."
	

	US-038

	pg 326;
	15.5.2.14;

	para 1, item(4);
	te
	
In the changes imported from Corrigendum 2, there are five places where what was "ultimate component" in coarray contexts in Fortran 2018 needs to be "potential subobject component" in Fortran 2023.
Reference:
	Change "ultimate component" to "potential subobject component" so that the item becomes "If the value of the entity or any subobject of it is affected through the dummy argument, then at any time during the invocation and execution of the procedure, either before or after the definition, it shall be referenced only through that dummy argument unless ..., or the dummy argument has a coarray potential subobject component and the reference is a coindexed reference of the corresponding coarray by a different image."
	

	US-039

	pg. 399
	16.9.107

	
	te
	
The editor’s report for the DIS contains the following comment: "If TEAM_NUMBER appears and the current team is the initial team, COARRAY does not have to be established. Is that deliberate? What about an unallocated allocatable, or an allocatable that is only established in one or more subteams? Obviously an unallocated allocatable does not make sense, but it does not appear to be ruled out. And only established in a subteam looks problematic."
Yes, we have failed to cover this case. There is a separate sentence for it in 9.6 Image selectors, para 3. We intended the rules for IMAGE_INDEX to be consistent with the rules in an image selector, we need a sentence here very like that in 9.6.

Reference:
	IMAGE_INDEX (COARRAY, SUB) ..., para 3, argument COARRAY, before "If TEAM appears" add "If TEAM_NUMBER appears and the current team is the initial team, it shall be established in the initial team and the value of TEAM_NUMBER shall be the team number for the initial team."
	

	GB-040

	3
	16.9.107

	Argument COARRAY
	te
	The case where TEAM_NUMBER appears and the current team is the initial team is not covered. See J3/22-200.
	Before "If TEAM appears" add
"If TEAM_NUMBER appears and the current team is the initial team, it shall be established in the initial team and the value of TEAM_NUMBER shall be the team number for the initial team."
	

	US-041

	pg. 361
	16.9.20

	
	te
	The requirements on the TARGET argument of ASSOCIATED are wrong, leading to a contradiction in the standard. The proposed change reword them to be “how we intended” (i.e. retain backwards compatibility, and do the obviously-right thing for new cases). For data pointers that are not assumed-rank, require the rank to be the same.
Reference:

	[361] 16.9.20 ASSOCIATED, Arguments paragraph, TARGET argument, replace entire description with that below.
Note: the second sentence of the first paragraph is unchanged.
"shall be a pointer or an entity that could be a target. If TARGET is a pointer then its pointer association status shall not be undefined.

If POINTER is a procedure pointer, TARGET shall be a procedure (or procedure pointer) that would be allowable as the target of a pointer assignment (10.2.2) for a procedure pointer with the same characteristics as POINTER.

Otherwise, TARGET shall be a noncoindexed variable that is not an array section with a vector subscript, or a reference to a function that returns a data pointer. If POINTER is not unlimited polymorphic, TARGET shall be type compatible with it, and the corresponding kind type parameters shall be equal. If POINTER is not assumed-rank, TARGET shall have the same rank as POINTER."
	

	GB-042

	1-2
	16.9.210

	Argument TOKENS, para 2.
	ed
	This says the tokens are assigned “by intrinsic assignment”, but the standard usually says “as if by intrinsic assignment” when there is no actual assignment statement.
	Change the para to
“The tokens in STRING are assigned in the order found, as if by intrinsic assignment, to the elements of TOKENS, in array element order”.
	

	US-043

	pg. 446;
	16.9.210;

	
	ed
	
Editorial corrections to the DIS
Reference
	TOKENIZE, Arguments para, argument FIRST, last sentence, "delimitor" -> "delimiter".
	

	US-044

	pg 374;
	16.9.54

	
	te
	
In the changes imported from Corrigendum 2, there are five places where what was "ultimate component" in coarray contexts in Fortran 2018 needs to be "potential subobject component" in Fortran 2023.
Reference:
	CO_BROADCAST, argument A, final sentence change "ultimate component" to "potential subobject component" twice so that the sentence becomes "If no error condition occurs, A becomes defined, as if by intrinsic assignment, on all images in the current team with the value of A on image SOURCE_IMAGE, including (re)allocation of any allocatable potential subobject component, and setting the dynamic type of any polymorphic allocatable potential subobject component."

	

	GB-045

	4-5
	16.9.54

	Argument A
	te
	Because this revision of Fortran allows an allocatable component to have a coarray component, the text needs to refer to any allocatable coarray potential subobject component. See J3/22-199.
	Twice, change "ultimate component" to "potential subobject component".
	

	US-046

	pg. 482;
	17.11.39;

	
	ed
	
Editorial corrections to the DIS
Reference
	IEEE_SET_FLAG, delete duplicate "Class" paragraph.
	

	US-047

	pg. 529
	19.3.4

	para 1,
para 2,
para3

	ed
	Usage of “may” has appeared where “can” is preferred. This appears three times.
Reference:

	Change “may” to “can” in paragraphs one, two and three in section 19.3.4 Components, type parameters, and bindings

	

	US-048

	pg. 529
	19.3.4

	para 5
	ed
	Also, there is an instance where the use of “may” should be “shall”, as the point in question is a specific requirement.
Reference:

	Change “may appear only” to “shall appear only” in paragraph five of 19.3.4 Components, type parameters and bindings

	

	**-049

	
	3

	
	
	If “9” refers to a clause number, it must be replaced with “Clause 9”. When referring to first-level clauses (i.e. Clause 1, Clause 2, Clause 5…), the word “Clause” must be spelled out
Besides, such cross references must be in notes to entry, not in the actual definition.

	Please correct relevant definitions and move references to notes to entry

	

	JP-001-050

	
	C.7.8

	example
	
	The example is too complicated and should be replaced with a simpler one. The paper J3/23-100 of INCITS/Fortran proposes an amendment of the example, which reduces the 109-line code to 76 lines.
	Follow the description of the paper J3/23-100 of INCITS/Fortran
(https://j3-fortran.org/doc/year/23/23-100.txt).

	

	GB-051

	
	C.7.8

	Example code.
	te
	This code is hard to follow. It ensures that each image keeps the same image index in the working team when other images fail
so that it does not need to access new data on a restart. The code can be simplified if this is not required, which would make it more suitable as an example in the standard.

	
Proposed new code is in the paper J3/23-100.

	

	**-052

	
	Foreword

	
	
	
	Please use the foreword sent to you via email
	

	**-053

	
	Introduction

	
	
	“When a deferred-length allocatable actual argument of an intrinsic procedure is to be assigned character data,”

In ISO deliverable, is to be/are to be = shall, which is not allowed in the introduction.
	Please remove “to be”
	

	GB-054

	5-6
	Introduction

	Bullet point Input/output

	te
	The sentence 'A deferred-length allocatable io-unit in a WRITE statement is allocated by the processor to the length of the record to be written.' is true only if the variable is scalar (see 12.4, bullet 4).
	Change “A deferred-length allocatable io-unit in a WRITE statement” to “'A deferred-length allocatable scalar io-unit in a WRITE statement”.
	

	**-055

	
	Table titles

	
	
	
In ISO deliverables the correct format for Table titles is:
Table 6.2 — Adjacent keywords where separating blanks are optional
	Please replace colon with Em dash and change title font to bold.

Please correct throughout the document. This also applies to figure titles ; please also correct the format of figure titles.
	

	**-056

	
	Whole document

	
	
	Single notes within a given clause or subclause shall not be numbered
	Please remove numbering from single notes
	

	**-057

	
	Whole document

	
	
	NOTEs are not indented (unless it refers to an indented list item)
	Please remove indentation before NOTEs.
	

	**-058

	
	Whole document

	
	
	Notes to entry and NOTEs are marked up using a grey filed. This is not allowed.

In ISO deliverables NOTEs and notes to entry are written using Cambria size 10.
	Please correct font size of notes to entry and NOTEs to Cambria size 10. Remove grey background.
	

	**-059

	
	Whole document

	
	
	Note to entry (i.e. in Clause 3) are numbered even when there is only one note to entry.
However, NOTEs are not numbered when there is only one NOTE in a given (sub)clause
	Please remove numbering for single NOTEs.
	

	**-060

	
	Whole document

	
	
	e.g.
“…on the rank (8.5.8, 8.5.17).”
“…initialization compatible (7.5.4.6) with…”
“…intrinsic assignment (10.2.1.3) to a value…”
	When referring to clauses or subclause, please use “see” or “in” before the clause or subclause number
	

	**-061

	
	Whole document

	
	
	ISO deliverables shall be written in Cambria
	Please use the correct font in the document except for code, which uses courier new.
	

	Template for comments and secretariat observations
	Date:2023-02-01
	Document:
	Project:

	MB/
NC1
	Line number
	Clause/
Subclause
	Paragraph/
Figure/Table
	Type of comment2
	Comments
	Proposed change
	Observations of the secretariat

1	MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2	Type of comment:	ge = general	te = technical	ed = editorial
Page 4 of 16
ISO_IEC DIS 1539-1 (Ed 5)_ANSI.docx: Collation successful
ISO_IEC DIS 1539-1 (Ed 5)_BSI.docx: Collation successful
ISO_IEC DIS 1539-1 (Ed 5)_ISO.doc: Collation successful
ISO_IEC DIS 1539-1 (Ed 5)_JISC.docx: Collation successful
Collation of files was successful. Number of collated files: 4
SELECTED (number of files): 4
PASSED TEST (number of files conformed to CCT table model): 4
FAILED TEST (number of files conformed to CCT table model): 0
CCT - Version 2020.1

[bookmark: _GoBack]

image2.png
3.45
data entity
data object, result of the evaluation of an expression, or the result of the execution of a function reference

image3.png
3.38.2

named constant
named data object with the PARAMETER attribute |(8.5.13)

3.39

construct entity

entity whose identifier has the scope of a construct 9.1, 19.4)
3.40

constant expression
expression satisfying the requirements specified in {0.1.12, hus ensuring that its value is constant

image4.emf
PL22.3-2022-00082- m228-22-292r2.txt

PL22.3-2022-00082-m228-22-292r2.txt

1. Introduction

The requirements on the TARGET argument of ASSOCIATED are wrong, leading to
a contradiction in the standard. This needs to be fixed sometime. Now is
our last chance to fix it without going through the interp process.

Examples of the defect appear at the end of this paper.

2. The defect

The basic requirement on TARGET is that it
 "shall be allowable as the data-target or proc-target in a pointer
 assignment statement (10.2.2) in which POINTER is data-pointer-
 object or proc-pointer-object".

This is both too loose and too strict.

The "too loose" part is that with rank-remapping pointer assignment, it
permits POINTER and TARGET to have different rank. As the result of the
function ASSOCIATED is unambiguously .FALSE. when the shapes of POINTER and
TARGET differ, this will always be .FALSE. (the shapes not even having the
same number of elements cannot be the same), and is thus useless.
(Or worse: permitting this can mislead the user into thinking that he might
get the answer .TRUE., and this cannot be the case.)

Aside: ASSOCIATED has always been a much stricter test than mere address
 comparison. Even in Fortran 90, it was trivial to end up with two
 pointers to the same memory locations in the same order, but with
 different shape, resulting in the answer .FALSE..

The "too strict" part comes because one could previously use ASSOCIATED
with the POINTER argument being a pointer that cannot appear as the
pointer-object in a pointer assignment statement. In this case, there is
no possible statement for TARGET to satisfy. Examples include POINTER being
INTENT(IN), PROTECTED (outside of its module), a reference to a pointer-
valued function, or an assumed-rank pointer.

3. Historical background

The requirements on TARGET were correct in Fortran 90 and 95. In Fortran
2003, procedure pointers were added (necessitating a change to the
requirements), and rank-remapping pointer assignment was added. In the
course of developing Fortran 2003, it was observed that the requirements
on the TARGET argument of ASSOCIATED were very similar to the requirements
on the target in a pointer assignment, and as a simplification the words
were changed to the current wording.

The paper that did this also mentioned rank remapping, apparently thinking
that it was desirable that this be addressed by ASSOCIATED, and forgetting
that the shape equality condition would make that worse than useless.

4. Recommended solution

Reword it to be "how we intended" (i.e. retain backwards compatibility, and
do the obviously-right thing for new cases). For data pointers that are not
assumed-rank, require the rank to be the same.

5. Possible wording strategies

(a) Revise the wording to explicitly list all the requirements, like we
 used to do before. This will be fairly long.

(b) Revise the wording so that instead of a pointer assignment statement
 for POINTER, it is one for a modifiable pointer with the same
 characteristics or attributes (except for intent and accessibility).

 Because there is no directly modifiable assumed-rank pointer, it is
 hard to see how the second part could be worded. We could use the
 weasel-wording for procedure pointers though (there being no functions
 that return assumed-rank pointers), and explicitly list the
 requirements for data pointers.

The edits below use strategy (a) for data pointers, and strategy (b)
for procedure pointers.

6. Edits to N2209

[27] 4.3.3 Fortran 2018 compatibility, p3+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2018 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.4 Fortran 2008 compatibility, p13+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2008 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.5 Fortran 2003 compatibility, p11+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2003 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[361] 16.9.20 ASSOCIATED, Arguments paragraph, TARGET argument,
 replace entire description with that below. It is unusual for an
 argument description to have multiple paragraphs, but not
 unprecedented (e.g. CO_REDUCE, SPLIT, TOKENIZE).

 Note: the second sentence of the first paragraph is unchanged.

 "shall be a pointer or an entity that could be a target. If TARGET is a
 pointer then its pointer association status shall not be undefined.

 If POINTER is a procedure pointer, TARGET shall be a procedure (or
 procedure pointer) that would be allowable as the target of a pointer
 assignment (10.2.2) for a procedure pointer with the same
 characteristics as POINTER.

 Otherwise, TARGET shall be a noncoindexed variable that is not an
 array section with a vector subscript, or a reference to a function
 that returns a data pointer. If POINTER is not unlimited polymorphic,
 TARGET shall be type compatible with it, and the corresponding kind
 type parameters shall be equal. If POINTER is not assumed-rank, TARGET
 shall have the same rank as POINTER."

{We don't have to require the POINTER/TARGET explicitly, as that is covered
 by "shall be a pointer or an entity that could be a target".}
{In the procedure pointer para, "(or procedure pointer)" is parenthesised
 because a procedure pointer is a procedure; i.e. those words could be
 deleted.}

7. Examples

7.1 Fortran 90 demonstrating shape difference

 Module example_1
 Real,Pointer :: p1(:,:), p2(:,:)
 End Module
 Subroutine set1
 Use example_1
 Common/c/target(2,3)
 Save /c/
 Target target
 p1 => target
 End Subroutine
 Subroutine set2
 Use example_1
 Common/c/target(3,2)
 Save /c/
 Target target
 p2 => target
 End Subroutine
 Program test
 Use example_1
 Common/c/x(6)
 x = [1,2,3,4,5,6]
 Call set1
 Call set2
 Print *,Associated(p1,p2) ! Prints "F" because the shapes differ.
 Print *,All([p1]==[p2]) ! Prints "T" because same values in array
 ! element order.
 End Program

7.2 Valid Fortran 90/95, invalid F2003+

 Program example2
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer,Intent(In) :: q(:)
 Print *,Associated(q,x)
 ! Valid F90/95, and will print "T", but not allowed in F2003+,
 ! as the pointer assignment q => x is invalid.
 End Subroutine
 End Program

7.3 Invalid Fortran 90/95, possibly valid F2003+

 Program example3
 Real,Target :: x(6)
 Real,Pointer :: p(:,:)
 p(1:2,1:3) => x
 Print *,Associated(p,x) ! Wrong rank, so invalid F90/95...
 ! ... but the pointer assignment is valid, so valid F2003+?
 ! ... it can only print "F" if it is valid.
 End Program

7.4 Invalid for assumed-rank even though it is allowed in ASSOCIATED

 Program example4
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer :: q(..) ! Assumed-rank
 Print *,Associated(q) ! Valid, prints "T".
 Print *,Associated(q,x) ! We would expect this to work too,
 ! and also print "T", but there are no pointer assignments
 ! q=>x with or without rank remapping.
 End Subroutine
 End Program

===END===

PL22.3-2022-00082-m228-22-292r2.txt

1. Introduction

The requirements on the TARGET argument of ASSOCIATED are wrong, leading to
a contradiction in the standard. This needs to be fixed sometime. Now is
our last chance to fix it without going through the interp process.

Examples of the defect appear at the end of this paper.

2. The defect

The basic requirement on TARGET is that it
 "shall be allowable as the data-target or proc-target in a pointer
 assignment statement (10.2.2) in which POINTER is data-pointer-
 object or proc-pointer-object".

This is both too loose and too strict.

The "too loose" part is that with rank-remapping pointer assignment, it
permits POINTER and TARGET to have different rank. As the result of the
function ASSOCIATED is unambiguously .FALSE. when the shapes of POINTER and
TARGET differ, this will always be .FALSE. (the shapes not even having the
same number of elements cannot be the same), and is thus useless.
(Or worse: permitting this can mislead the user into thinking that he might
get the answer .TRUE., and this cannot be the case.)

Aside: ASSOCIATED has always been a much stricter test than mere address
 comparison. Even in Fortran 90, it was trivial to end up with two
 pointers to the same memory locations in the same order, but with
 different shape, resulting in the answer .FALSE..

The "too strict" part comes because one could previously use ASSOCIATED
with the POINTER argument being a pointer that cannot appear as the
pointer-object in a pointer assignment statement. In this case, there is
no possible statement for TARGET to satisfy. Examples include POINTER being
INTENT(IN), PROTECTED (outside of its module), a reference to a pointer-
valued function, or an assumed-rank pointer.

3. Historical background

The requirements on TARGET were correct in Fortran 90 and 95. In Fortran
2003, procedure pointers were added (necessitating a change to the
requirements), and rank-remapping pointer assignment was added. In the
course of developing Fortran 2003, it was observed that the requirements
on the TARGET argument of ASSOCIATED were very similar to the requirements
on the target in a pointer assignment, and as a simplification the words
were changed to the current wording.

The paper that did this also mentioned rank remapping, apparently thinking
that it was desirable that this be addressed by ASSOCIATED, and forgetting
that the shape equality condition would make that worse than useless.

4. Recommended solution

Reword it to be "how we intended" (i.e. retain backwards compatibility, and
do the obviously-right thing for new cases). For data pointers that are not
assumed-rank, require the rank to be the same.

5. Possible wording strategies

(a) Revise the wording to explicitly list all the requirements, like we
 used to do before. This will be fairly long.

(b) Revise the wording so that instead of a pointer assignment statement
 for POINTER, it is one for a modifiable pointer with the same
 characteristics or attributes (except for intent and accessibility).

 Because there is no directly modifiable assumed-rank pointer, it is
 hard to see how the second part could be worded. We could use the
 weasel-wording for procedure pointers though (there being no functions
 that return assumed-rank pointers), and explicitly list the
 requirements for data pointers.

The edits below use strategy (a) for data pointers, and strategy (b)
for procedure pointers.

6. Edits to N2209

[27] 4.3.3 Fortran 2018 compatibility, p3+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2018 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.4 Fortran 2008 compatibility, p13+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2008 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.5 Fortran 2003 compatibility, p11+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2003 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[361] 16.9.20 ASSOCIATED, Arguments paragraph, TARGET argument,
 replace entire description with that below. It is unusual for an
 argument description to have multiple paragraphs, but not
 unprecedented (e.g. CO_REDUCE, SPLIT, TOKENIZE).

 Note: the second sentence of the first paragraph is unchanged.

 "shall be a pointer or an entity that could be a target. If TARGET is a
 pointer then its pointer association status shall not be undefined.

 If POINTER is a procedure pointer, TARGET shall be a procedure (or
 procedure pointer) that would be allowable as the target of a pointer
 assignment (10.2.2) for a procedure pointer with the same
 characteristics as POINTER.

 Otherwise, TARGET shall be a noncoindexed variable that is not an
 array section with a vector subscript, or a reference to a function
 that returns a data pointer. If POINTER is not unlimited polymorphic,
 TARGET shall be type compatible with it, and the corresponding kind
 type parameters shall be equal. If POINTER is not assumed-rank, TARGET
 shall have the same rank as POINTER."

{We don't have to require the POINTER/TARGET explicitly, as that is covered
 by "shall be a pointer or an entity that could be a target".}
{In the procedure pointer para, "(or procedure pointer)" is parenthesised
 because a procedure pointer is a procedure; i.e. those words could be
 deleted.}

7. Examples

7.1 Fortran 90 demonstrating shape difference

 Module example_1
 Real,Pointer :: p1(:,:), p2(:,:)
 End Module
 Subroutine set1
 Use example_1
 Common/c/target(2,3)
 Save /c/
 Target target
 p1 => target
 End Subroutine
 Subroutine set2
 Use example_1
 Common/c/target(3,2)
 Save /c/
 Target target
 p2 => target
 End Subroutine
 Program test
 Use example_1
 Common/c/x(6)
 x = [1,2,3,4,5,6]
 Call set1
 Call set2
 Print *,Associated(p1,p2) ! Prints "F" because the shapes differ.
 Print *,All([p1]==[p2]) ! Prints "T" because same values in array
 ! element order.
 End Program

7.2 Valid Fortran 90/95, invalid F2003+

 Program example2
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer,Intent(In) :: q(:)
 Print *,Associated(q,x)
 ! Valid F90/95, and will print "T", but not allowed in F2003+,
 ! as the pointer assignment q => x is invalid.
 End Subroutine
 End Program

7.3 Invalid Fortran 90/95, possibly valid F2003+

 Program example3
 Real,Target :: x(6)
 Real,Pointer :: p(:,:)
 p(1:2,1:3) => x
 Print *,Associated(p,x) ! Wrong rank, so invalid F90/95...
 ! ... but the pointer assignment is valid, so valid F2003+?
 ! ... it can only print "F" if it is valid.
 End Program

7.4 Invalid for assumed-rank even though it is allowed in ASSOCIATED

 Program example4
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer :: q(..) ! Assumed-rank
 Print *,Associated(q) ! Valid, prints "T".
 Print *,Associated(q,x) ! We would expect this to work too,
 ! and also print "T", but there are no pointer assignments
 ! q=>x with or without rank remapping.
 End Subroutine
 End Program

===END===

PL22.3-2022-00082-m228-22-292r2.txt

1. Introduction

The requirements on the TARGET argument of ASSOCIATED are wrong, leading to
a contradiction in the standard. This needs to be fixed sometime. Now is
our last chance to fix it without going through the interp process.

Examples of the defect appear at the end of this paper.

2. The defect

The basic requirement on TARGET is that it
 "shall be allowable as the data-target or proc-target in a pointer
 assignment statement (10.2.2) in which POINTER is data-pointer-
 object or proc-pointer-object".

This is both too loose and too strict.

The "too loose" part is that with rank-remapping pointer assignment, it
permits POINTER and TARGET to have different rank. As the result of the
function ASSOCIATED is unambiguously .FALSE. when the shapes of POINTER and
TARGET differ, this will always be .FALSE. (the shapes not even having the
same number of elements cannot be the same), and is thus useless.
(Or worse: permitting this can mislead the user into thinking that he might
get the answer .TRUE., and this cannot be the case.)

Aside: ASSOCIATED has always been a much stricter test than mere address
 comparison. Even in Fortran 90, it was trivial to end up with two
 pointers to the same memory locations in the same order, but with
 different shape, resulting in the answer .FALSE..

The "too strict" part comes because one could previously use ASSOCIATED
with the POINTER argument being a pointer that cannot appear as the
pointer-object in a pointer assignment statement. In this case, there is
no possible statement for TARGET to satisfy. Examples include POINTER being
INTENT(IN), PROTECTED (outside of its module), a reference to a pointer-
valued function, or an assumed-rank pointer.

3. Historical background

The requirements on TARGET were correct in Fortran 90 and 95. In Fortran
2003, procedure pointers were added (necessitating a change to the
requirements), and rank-remapping pointer assignment was added. In the
course of developing Fortran 2003, it was observed that the requirements
on the TARGET argument of ASSOCIATED were very similar to the requirements
on the target in a pointer assignment, and as a simplification the words
were changed to the current wording.

The paper that did this also mentioned rank remapping, apparently thinking
that it was desirable that this be addressed by ASSOCIATED, and forgetting
that the shape equality condition would make that worse than useless.

4. Recommended solution

Reword it to be "how we intended" (i.e. retain backwards compatibility, and
do the obviously-right thing for new cases). For data pointers that are not
assumed-rank, require the rank to be the same.

5. Possible wording strategies

(a) Revise the wording to explicitly list all the requirements, like we
 used to do before. This will be fairly long.

(b) Revise the wording so that instead of a pointer assignment statement
 for POINTER, it is one for a modifiable pointer with the same
 characteristics or attributes (except for intent and accessibility).

 Because there is no directly modifiable assumed-rank pointer, it is
 hard to see how the second part could be worded. We could use the
 weasel-wording for procedure pointers though (there being no functions
 that return assumed-rank pointers), and explicitly list the
 requirements for data pointers.

The edits below use strategy (a) for data pointers, and strategy (b)
for procedure pointers.

6. Edits to N2209

[27] 4.3.3 Fortran 2018 compatibility, p3+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2018 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.4 Fortran 2008 compatibility, p13+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2008 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.5 Fortran 2003 compatibility, p11+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2003 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[361] 16.9.20 ASSOCIATED, Arguments paragraph, TARGET argument,
 replace entire description with that below. It is unusual for an
 argument description to have multiple paragraphs, but not
 unprecedented (e.g. CO_REDUCE, SPLIT, TOKENIZE).

 Note: the second sentence of the first paragraph is unchanged.

 "shall be a pointer or an entity that could be a target. If TARGET is a
 pointer then its pointer association status shall not be undefined.

 If POINTER is a procedure pointer, TARGET shall be a procedure (or
 procedure pointer) that would be allowable as the target of a pointer
 assignment (10.2.2) for a procedure pointer with the same
 characteristics as POINTER.

 Otherwise, TARGET shall be a noncoindexed variable that is not an
 array section with a vector subscript, or a reference to a function
 that returns a data pointer. If POINTER is not unlimited polymorphic,
 TARGET shall be type compatible with it, and the corresponding kind
 type parameters shall be equal. If POINTER is not assumed-rank, TARGET
 shall have the same rank as POINTER."

{We don't have to require the POINTER/TARGET explicitly, as that is covered
 by "shall be a pointer or an entity that could be a target".}
{In the procedure pointer para, "(or procedure pointer)" is parenthesised
 because a procedure pointer is a procedure; i.e. those words could be
 deleted.}

7. Examples

7.1 Fortran 90 demonstrating shape difference

 Module example_1
 Real,Pointer :: p1(:,:), p2(:,:)
 End Module
 Subroutine set1
 Use example_1
 Common/c/target(2,3)
 Save /c/
 Target target
 p1 => target
 End Subroutine
 Subroutine set2
 Use example_1
 Common/c/target(3,2)
 Save /c/
 Target target
 p2 => target
 End Subroutine
 Program test
 Use example_1
 Common/c/x(6)
 x = [1,2,3,4,5,6]
 Call set1
 Call set2
 Print *,Associated(p1,p2) ! Prints "F" because the shapes differ.
 Print *,All([p1]==[p2]) ! Prints "T" because same values in array
 ! element order.
 End Program

7.2 Valid Fortran 90/95, invalid F2003+

 Program example2
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer,Intent(In) :: q(:)
 Print *,Associated(q,x)
 ! Valid F90/95, and will print "T", but not allowed in F2003+,
 ! as the pointer assignment q => x is invalid.
 End Subroutine
 End Program

7.3 Invalid Fortran 90/95, possibly valid F2003+

 Program example3
 Real,Target :: x(6)
 Real,Pointer :: p(:,:)
 p(1:2,1:3) => x
 Print *,Associated(p,x) ! Wrong rank, so invalid F90/95...
 ! ... but the pointer assignment is valid, so valid F2003+?
 ! ... it can only print "F" if it is valid.
 End Program

7.4 Invalid for assumed-rank even though it is allowed in ASSOCIATED

 Program example4
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer :: q(..) ! Assumed-rank
 Print *,Associated(q) ! Valid, prints "T".
 Print *,Associated(q,x) ! We would expect this to work too,
 ! and also print "T", but there are no pointer assignments
 ! q=>x with or without rank remapping.
 End Subroutine
 End Program

===END===

image5.png
For example, a processor might allow a procedure defined by some language other than Fortran or C to be
invoked if it can be described by a C prototype as defined in ISO/IEC 2018, 6.7.6.3.

PL22.3-2022-00083-m228-22-193.txt

Index "enumeration constructor" (as text, not the syntax term)
 on pages 54, 91 (definition), and 116.
Index "enum constructor" (text) on pages 54 and 116.

[xiii] Introduction, Intrinsic procedures, sentence about SPLIT,
 "at time" -> "at a time".

[446] 16.9.210 TOKENIZE, Arguments para, argument FIRST, last sentence,
 "delimitor" -> "delimiter".

[482] 17.11.39 IEEE_SET_FLAG, delete duplicate "Class" paragraph.

===END===

PL22.3-2022-00083-m228-22-193.txt

Index "enumeration constructor" (as text, not the syntax term)
 on pages 54, 91 (definition), and 116.
Index "enum constructor" (text) on pages 54 and 116.

[xiii] Introduction, Intrinsic procedures, sentence about SPLIT,
 "at time" -> "at a time".

[446] 16.9.210 TOKENIZE, Arguments para, argument FIRST, last sentence,
 "delimitor" -> "delimiter".

[482] 17.11.39 IEEE_SET_FLAG, delete duplicate "Class" paragraph.

===END===

image6.emf
PL22.3-2022-00086- m228-22-201.txt

PL22.3-2022-00086-m228-22-201.txt
Discussion

In interp F18/040 in N2205 the sentence
"If the coarray is an ultimate component of a dummy argument, the
ultimate arguments on those images shall be declared with the same name
in the same scoping unit and if in a recursive procedure at the same
depth of recursion."
was passed for 9.7.1.2 Execution of an ALLOCATE statement. The words
"and if in a recursive procedure at the same depth of recursion" at the
end of the sentence were not included in N2203 (Corrigendum 2) or the DIS
because something cannot be declared at a depth of recursion. However, in
the case of unsaved local variable of a recursive procedure, the depth of
recursion should be taken into account. An edit for the DIS is suggested.

Edit to the DIS

In 9.7.1.2 Execution of an ALLOCATE statement, para 4, at the end of the
sentence
"If the coarray is an ultimate component of a dummy argument, the
ultimate arguments on those images shall be declared with the same name
in the same scoping unit."
add
"; if the ultimate argument is an unsaved local variable of a recursive
procedure, the execution of the ALLOCATE statement shall be at the same
depth of recursion of that procedure on every active image in the
current team".

image7.emf
PL22.3-2022-00088- m228-22-206.txt

PL22.3-2022-00088-m228-22-206.txt

1. Introduction

This is a development of, and response to, paper 22-204.

2. Problems and answers

[166] 10.1.11 Specification expression, p7, 1st sentence, says

 "If a specification expression includes a specification inquiry that
 depends on a type parameter, array bound, or cobound of an entity
 specified in the same specification-part, the type parameter, array
 bound, or cobound shall be specified in a prior specification of the
 specification-part."

This omits type, but there is a specification inquiry that depends only on
the type when it is a derived type with no type parameters: STORAGE_SIZE.
For example

 Integer :: x(Storage_Size(y))
 Type t
 Real c
 End Type
 Type(t) y

There is no dependence that triggers the "prior specification" requirement,
other than the avoidance of nonsense. This needs to be corrected - an edit
appears below.

Paper 22-204 went on to suggest that
 "it does not account for implicit declarations".

Actually, it does. The type of an entity that is implicitly typed is
specified by the IMPLICIT statement (if there is one), or the lack of
an IMPLICIT statement (if there is not), and IMPLICIT statements appear
prior to other specification statements.

3. Edit to N2209

[166] 10.1.11 Specification expression, p7, first sentence,
 change "a type parameter, array bound, or cobound"
 to "the type, a type parameter, an array bound, or a cobound",
 and change "the type parameter"
 to "the type, type parameter",

Making that whole first sentence read

 "If a specification expression includes a specification inquiry that
 depends on the type, a type parameter, an array bound, or a cobound of
 an entity specified in the same specification-part, the type, type
 parameter, array bound, or cobound shall be specified in a prior
 specification of the specification-part."

===END===

image8.emf
PL22.3-2022-00084- m228-22-199.txt

PL22.3-2022-00084-m228-22-199.txt
Discussion

In the changes imported from Corrigendum 2, there are five places (see
edits below) where what was "ultimate component" in coarray contexts
in Fortran 2018 needs to be "potential subobject component" in Fortran
2023.

Edits to the DIS

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (3) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"Action that affects the value of the entity or any subobject of it shall
be taken only through the dummy argument unless ..., or the dummy
argument has a coarray potential subobject component and the action is a
coindexed definition of the corresponding coarray by a different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (4) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"If the value of the entity or any subobject of it is affected through
the dummy argument, then at any time during the invocation and execution
of the procedure, either before or after the definition, it shall be
referenced only through that dummy argument unless ..., or
the dummy argument has a coarray potential subobject component and the
reference is a coindexed reference of the corresponding coarray by a
different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
final note (NOTE 5), first sentence, change "ultimate component" to
"potential subobject component" so that the sentence becomes
"The exceptions to the aliasing restrictions for dummy arguments that
are coarrays or have coarray potential subobject components enable
cross-image access while the procedure is executing."

In 16.9.54 CO_BROADCAST, argument A, final sentence change "ultimate
component" to "potential subobject component" twice so that the sentence
becomes
"If no error condition occurs, A becomes defined, as if by intrinsic
assignment, on all images in the current team with the value of A on
image SOURCE_IMAGE, including (re)allocation of any allocatable potential
subobject component, and setting the dynamic type of any polymorphic
allocatable potential subobject component."

PL22.3-2022-00084-m228-22-199.txt
Discussion

In the changes imported from Corrigendum 2, there are five places (see
edits below) where what was "ultimate component" in coarray contexts
in Fortran 2018 needs to be "potential subobject component" in Fortran
2023.

Edits to the DIS

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (3) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"Action that affects the value of the entity or any subobject of it shall
be taken only through the dummy argument unless ..., or the dummy
argument has a coarray potential subobject component and the action is a
coindexed definition of the corresponding coarray by a different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (4) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"If the value of the entity or any subobject of it is affected through
the dummy argument, then at any time during the invocation and execution
of the procedure, either before or after the definition, it shall be
referenced only through that dummy argument unless ..., or
the dummy argument has a coarray potential subobject component and the
reference is a coindexed reference of the corresponding coarray by a
different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
final note (NOTE 5), first sentence, change "ultimate component" to
"potential subobject component" so that the sentence becomes
"The exceptions to the aliasing restrictions for dummy arguments that
are coarrays or have coarray potential subobject components enable
cross-image access while the procedure is executing."

In 16.9.54 CO_BROADCAST, argument A, final sentence change "ultimate
component" to "potential subobject component" twice so that the sentence
becomes
"If no error condition occurs, A becomes defined, as if by intrinsic
assignment, on all images in the current team with the value of A on
image SOURCE_IMAGE, including (re)allocation of any allocatable potential
subobject component, and setting the dynamic type of any polymorphic
allocatable potential subobject component."

PL22.3-2022-00084-m228-22-199.txt
Discussion

In the changes imported from Corrigendum 2, there are five places (see
edits below) where what was "ultimate component" in coarray contexts
in Fortran 2018 needs to be "potential subobject component" in Fortran
2023.

Edits to the DIS

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (3) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"Action that affects the value of the entity or any subobject of it shall
be taken only through the dummy argument unless ..., or the dummy
argument has a coarray potential subobject component and the action is a
coindexed definition of the corresponding coarray by a different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (4) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"If the value of the entity or any subobject of it is affected through
the dummy argument, then at any time during the invocation and execution
of the procedure, either before or after the definition, it shall be
referenced only through that dummy argument unless ..., or
the dummy argument has a coarray potential subobject component and the
reference is a coindexed reference of the corresponding coarray by a
different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
final note (NOTE 5), first sentence, change "ultimate component" to
"potential subobject component" so that the sentence becomes
"The exceptions to the aliasing restrictions for dummy arguments that
are coarrays or have coarray potential subobject components enable
cross-image access while the procedure is executing."

In 16.9.54 CO_BROADCAST, argument A, final sentence change "ultimate
component" to "potential subobject component" twice so that the sentence
becomes
"If no error condition occurs, A becomes defined, as if by intrinsic
assignment, on all images in the current team with the value of A on
image SOURCE_IMAGE, including (re)allocation of any allocatable potential
subobject component, and setting the dynamic type of any polymorphic
allocatable potential subobject component."

image9.emf
PL22.3-2022-00085- m228-22-200.txt

PL22.3-2022-00085-m228-22-200.txt
Discussion

Paper 22-153r2, which was passesd at meeting 227, contained the edit

[402:15] In 16.9.107 IMAGE_INDEX (COARRAY, SUB) ..., para 3, COARRAY,
sentence 2, change
"an ancestor" to "the parent" so that the sentence reads
"If TEAM_NUMBER appears and the current team is not the initial
team, it shall be established in the parent of the current team."
[It's the parent that matters. We do not need to mention ancestors of
the parent.]

In paper 22-191, Malcolm Cohen commented
"If TEAM_NUMBER appears and the current team is the initial team,
 COARRAY does not have to be established. Is that deliberate? What
 about an unallocated allocatable, or an allocatable that is only
 established in one or more subteams? Obviously an unallocated
 allocatable does not make sense, but it does not appear to be ruled
 out. And only established in a subteam looks problematic."
		
Yes, we have failed to cover this case. There is a separate sentence for
it in 9.6 Image selectors, para 3. I think we intended the rules for
IMAGE_INDEX to be consistent with the rules in an image selector, so I
think we need a sentence here very like that in 9.6.

Edit to the DIS

In 16.9.107 IMAGE_INDEX (COARRAY, SUB) ..., para 3, argument COARRAY,
before "If TEAM appears" add
"If TEAM_NUMBER appears and the current team is the initial team, it
shall be established in the initial team and the value of TEAM_NUMBER
shall be the team number for the initial team."

PL22.3-2022-00082-m228-22-292r2.txt

1. Introduction

The requirements on the TARGET argument of ASSOCIATED are wrong, leading to
a contradiction in the standard. This needs to be fixed sometime. Now is
our last chance to fix it without going through the interp process.

Examples of the defect appear at the end of this paper.

2. The defect

The basic requirement on TARGET is that it
 "shall be allowable as the data-target or proc-target in a pointer
 assignment statement (10.2.2) in which POINTER is data-pointer-
 object or proc-pointer-object".

This is both too loose and too strict.

The "too loose" part is that with rank-remapping pointer assignment, it
permits POINTER and TARGET to have different rank. As the result of the
function ASSOCIATED is unambiguously .FALSE. when the shapes of POINTER and
TARGET differ, this will always be .FALSE. (the shapes not even having the
same number of elements cannot be the same), and is thus useless.
(Or worse: permitting this can mislead the user into thinking that he might
get the answer .TRUE., and this cannot be the case.)

Aside: ASSOCIATED has always been a much stricter test than mere address
 comparison. Even in Fortran 90, it was trivial to end up with two
 pointers to the same memory locations in the same order, but with
 different shape, resulting in the answer .FALSE..

The "too strict" part comes because one could previously use ASSOCIATED
with the POINTER argument being a pointer that cannot appear as the
pointer-object in a pointer assignment statement. In this case, there is
no possible statement for TARGET to satisfy. Examples include POINTER being
INTENT(IN), PROTECTED (outside of its module), a reference to a pointer-
valued function, or an assumed-rank pointer.

3. Historical background

The requirements on TARGET were correct in Fortran 90 and 95. In Fortran
2003, procedure pointers were added (necessitating a change to the
requirements), and rank-remapping pointer assignment was added. In the
course of developing Fortran 2003, it was observed that the requirements
on the TARGET argument of ASSOCIATED were very similar to the requirements
on the target in a pointer assignment, and as a simplification the words
were changed to the current wording.

The paper that did this also mentioned rank remapping, apparently thinking
that it was desirable that this be addressed by ASSOCIATED, and forgetting
that the shape equality condition would make that worse than useless.

4. Recommended solution

Reword it to be "how we intended" (i.e. retain backwards compatibility, and
do the obviously-right thing for new cases). For data pointers that are not
assumed-rank, require the rank to be the same.

5. Possible wording strategies

(a) Revise the wording to explicitly list all the requirements, like we
 used to do before. This will be fairly long.

(b) Revise the wording so that instead of a pointer assignment statement
 for POINTER, it is one for a modifiable pointer with the same
 characteristics or attributes (except for intent and accessibility).

 Because there is no directly modifiable assumed-rank pointer, it is
 hard to see how the second part could be worded. We could use the
 weasel-wording for procedure pointers though (there being no functions
 that return assumed-rank pointers), and explicitly list the
 requirements for data pointers.

The edits below use strategy (a) for data pointers, and strategy (b)
for procedure pointers.

6. Edits to N2209

[27] 4.3.3 Fortran 2018 compatibility, p3+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2018 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.4 Fortran 2008 compatibility, p13+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2008 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[29] 4.3.5 Fortran 2003 compatibility, p11+
 (before the "different interpretation" paragraph)
 Insert new paragraph
 "Fortran 2003 permitted the POINTER and TARGET arguments to the
 intrinsic function ASSOCIATED to have different rank; this document
 does not permit such usage."

[361] 16.9.20 ASSOCIATED, Arguments paragraph, TARGET argument,
 replace entire description with that below. It is unusual for an
 argument description to have multiple paragraphs, but not
 unprecedented (e.g. CO_REDUCE, SPLIT, TOKENIZE).

 Note: the second sentence of the first paragraph is unchanged.

 "shall be a pointer or an entity that could be a target. If TARGET is a
 pointer then its pointer association status shall not be undefined.

 If POINTER is a procedure pointer, TARGET shall be a procedure (or
 procedure pointer) that would be allowable as the target of a pointer
 assignment (10.2.2) for a procedure pointer with the same
 characteristics as POINTER.

 Otherwise, TARGET shall be a noncoindexed variable that is not an
 array section with a vector subscript, or a reference to a function
 that returns a data pointer. If POINTER is not unlimited polymorphic,
 TARGET shall be type compatible with it, and the corresponding kind
 type parameters shall be equal. If POINTER is not assumed-rank, TARGET
 shall have the same rank as POINTER."

{We don't have to require the POINTER/TARGET explicitly, as that is covered
 by "shall be a pointer or an entity that could be a target".}
{In the procedure pointer para, "(or procedure pointer)" is parenthesised
 because a procedure pointer is a procedure; i.e. those words could be
 deleted.}

7. Examples

7.1 Fortran 90 demonstrating shape difference

 Module example_1
 Real,Pointer :: p1(:,:), p2(:,:)
 End Module
 Subroutine set1
 Use example_1
 Common/c/target(2,3)
 Save /c/
 Target target
 p1 => target
 End Subroutine
 Subroutine set2
 Use example_1
 Common/c/target(3,2)
 Save /c/
 Target target
 p2 => target
 End Subroutine
 Program test
 Use example_1
 Common/c/x(6)
 x = [1,2,3,4,5,6]
 Call set1
 Call set2
 Print *,Associated(p1,p2) ! Prints "F" because the shapes differ.
 Print *,All([p1]==[p2]) ! Prints "T" because same values in array
 ! element order.
 End Program

7.2 Valid Fortran 90/95, invalid F2003+

 Program example2
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer,Intent(In) :: q(:)
 Print *,Associated(q,x)
 ! Valid F90/95, and will print "T", but not allowed in F2003+,
 ! as the pointer assignment q => x is invalid.
 End Subroutine
 End Program

7.3 Invalid Fortran 90/95, possibly valid F2003+

 Program example3
 Real,Target :: x(6)
 Real,Pointer :: p(:,:)
 p(1:2,1:3) => x
 Print *,Associated(p,x) ! Wrong rank, so invalid F90/95...
 ! ... but the pointer assignment is valid, so valid F2003+?
 ! ... it can only print "F" if it is valid.
 End Program

7.4 Invalid for assumed-rank even though it is allowed in ASSOCIATED

 Program example4
 Real,Target :: x(6)
 Real,Pointer :: p(:)
 p => x
 Call test(p)
 Contains
 Subroutine test(q)
 Real,Pointer :: q(..) ! Assumed-rank
 Print *,Associated(q) ! Valid, prints "T".
 Print *,Associated(q,x) ! We would expect this to work too,
 ! and also print "T", but there are no pointer assignments
 ! q=>x with or without rank remapping.
 End Subroutine
 End Program

===END===

PL22.3-2022-00083-m228-22-193.txt

Index "enumeration constructor" (as text, not the syntax term)
 on pages 54, 91 (definition), and 116.
Index "enum constructor" (text) on pages 54 and 116.

[xiii] Introduction, Intrinsic procedures, sentence about SPLIT,
 "at time" -> "at a time".

[446] 16.9.210 TOKENIZE, Arguments para, argument FIRST, last sentence,
 "delimitor" -> "delimiter".

[482] 17.11.39 IEEE_SET_FLAG, delete duplicate "Class" paragraph.

===END===

PL22.3-2022-00084-m228-22-199.txt
Discussion

In the changes imported from Corrigendum 2, there are five places (see
edits below) where what was "ultimate component" in coarray contexts
in Fortran 2018 needs to be "potential subobject component" in Fortran
2023.

Edits to the DIS

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (3) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"Action that affects the value of the entity or any subobject of it shall
be taken only through the dummy argument unless ..., or the dummy
argument has a coarray potential subobject component and the action is a
coindexed definition of the corresponding coarray by a different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
para 1, item (4) (e), change "ultimate component" to "potential subobject
component" so that the item becomes
"If the value of the entity or any subobject of it is affected through
the dummy argument, then at any time during the invocation and execution
of the procedure, either before or after the definition, it shall be
referenced only through that dummy argument unless ..., or
the dummy argument has a coarray potential subobject component and the
reference is a coindexed reference of the corresponding coarray by a
different image."

In 15.5.2.14 Restrictions on entities associated with dummy arguments,
final note (NOTE 5), first sentence, change "ultimate component" to
"potential subobject component" so that the sentence becomes
"The exceptions to the aliasing restrictions for dummy arguments that
are coarrays or have coarray potential subobject components enable
cross-image access while the procedure is executing."

In 16.9.54 CO_BROADCAST, argument A, final sentence change "ultimate
component" to "potential subobject component" twice so that the sentence
becomes
"If no error condition occurs, A becomes defined, as if by intrinsic
assignment, on all images in the current team with the value of A on
image SOURCE_IMAGE, including (re)allocation of any allocatable potential
subobject component, and setting the dynamic type of any polymorphic
allocatable potential subobject component."

PL22.3-2022-00083-m228-22-193.txt

Index "enumeration constructor" (as text, not the syntax term)
 on pages 54, 91 (definition), and 116.
Index "enum constructor" (text) on pages 54 and 116.

[xiii] Introduction, Intrinsic procedures, sentence about SPLIT,
 "at time" -> "at a time".

[446] 16.9.210 TOKENIZE, Arguments para, argument FIRST, last sentence,
 "delimitor" -> "delimiter".

[482] 17.11.39 IEEE_SET_FLAG, delete duplicate "Class" paragraph.

===END===

image10.emf
PL22.3-2022-00087- m228-22-205.txt

PL22.3-2022-00087-m228-22-205.txt
1. Response to 22-203

The second sentence of 19.3.4 Components, type parameters, and bindings
says (of a component name)

 Outside of the type definition, it may also
 appear within a designator of a component of
 that type or as a component keyword in a
 structure constructor for that type.

22-203 says
 "the wording makes it seem that the uses in a designator or as
 a component keyword are allowed only outside the type definition"

The wording does not say that, and if it did say that it would not be a
problem, as it would be true. That is because the declaration of an object
of a type, and thus its designator, is not allowed before the type has been
defined. Structure constructors are similarly constrained.

22-203 continues
 "Also, the word "also" suggests that there is some other use of
 component names outside type definitions."

I do not agree that is suggests such an interpretation. Following on from
the first sentence of that paragraph,
 "A component name has the scope of its derived-type definition.",
the word "also" means "apart from that". It is sufficiently unusual for
there to be any use of a name outside its scope that this is quite
reasonable wording, which is why it has been like that for over thirty
years without complaint.

The edits in paper 22-203 suggest "can appear only", i.e. the word "only"
has crept in. This sounds like we are describing some kind of restriction,
and is not appropriate here where we are explaining the opposite of a
restriction.

22-203 states
 "Parallel issues arise for the second and third sentences of 19.3.4."

Parallel responses arise.

It must be admitted that there is no need for these paragraphs to give
permission, and although there is no problem with them doing so, I would
agree that "can" would be better than "may". (In the distant past we often
used "may" in a casual way to mean capability; which might well have been
in accordance with ancient ANSI drafting rules.)

Also I note that paragraph five of this subclause uses "may appear only":

 "A component name or binding name may appear only in a scope in which
 it is accessible."

Although I think that language is permitted by ISO, and expresses a
requirement, the more direct wordings
 "shall appear only" (for a requirement),
or
 "can appear only" (if we are merely noting a requirement elsewhere)
would, I think, be better. And although I believe the accessibility rules
are adequately stated elsewhere, for now I would suggest keeping this as a
requirement with "shall". (I will also note that "may appear only" is
ambiguous in English, which is another good reason for avoiding it.)

2. Edits to N2209

[529] 19.3.4 Components, type parameters, and bindings,
 first three paragraphs,
 change "may" to "can" in each paragraph.

[529] Same subclause, paragraph five,
 change "may appear only" to "shall appear only".

===END===

PL22.3-2022-00087-m228-22-205.txt
1. Response to 22-203

The second sentence of 19.3.4 Components, type parameters, and bindings
says (of a component name)

 Outside of the type definition, it may also
 appear within a designator of a component of
 that type or as a component keyword in a
 structure constructor for that type.

22-203 says
 "the wording makes it seem that the uses in a designator or as
 a component keyword are allowed only outside the type definition"

The wording does not say that, and if it did say that it would not be a
problem, as it would be true. That is because the declaration of an object
of a type, and thus its designator, is not allowed before the type has been
defined. Structure constructors are similarly constrained.

22-203 continues
 "Also, the word "also" suggests that there is some other use of
 component names outside type definitions."

I do not agree that is suggests such an interpretation. Following on from
the first sentence of that paragraph,
 "A component name has the scope of its derived-type definition.",
the word "also" means "apart from that". It is sufficiently unusual for
there to be any use of a name outside its scope that this is quite
reasonable wording, which is why it has been like that for over thirty
years without complaint.

The edits in paper 22-203 suggest "can appear only", i.e. the word "only"
has crept in. This sounds like we are describing some kind of restriction,
and is not appropriate here where we are explaining the opposite of a
restriction.

22-203 states
 "Parallel issues arise for the second and third sentences of 19.3.4."

Parallel responses arise.

It must be admitted that there is no need for these paragraphs to give
permission, and although there is no problem with them doing so, I would
agree that "can" would be better than "may". (In the distant past we often
used "may" in a casual way to mean capability; which might well have been
in accordance with ancient ANSI drafting rules.)

Also I note that paragraph five of this subclause uses "may appear only":

 "A component name or binding name may appear only in a scope in which
 it is accessible."

Although I think that language is permitted by ISO, and expresses a
requirement, the more direct wordings
 "shall appear only" (for a requirement),
or
 "can appear only" (if we are merely noting a requirement elsewhere)
would, I think, be better. And although I believe the accessibility rules
are adequately stated elsewhere, for now I would suggest keeping this as a
requirement with "shall". (I will also note that "may appear only" is
ambiguous in English, which is another good reason for avoiding it.)

2. Edits to N2209

[529] 19.3.4 Components, type parameters, and bindings,
 first three paragraphs,
 change "may" to "can" in each paragraph.

[529] Same subclause, paragraph five,
 change "may appear only" to "shall appear only".

===END===

image11.png
3.46
data object

object
constant (7.1.4), vur]nbr subobject of a constant (5.4.3.2.4)

image12.png
Table 6.2: Adjacent keywords where separating blanks are optional

image1.emf
PL22.3-2022-00083- m228-22-193.txt

PL22.3-2022-00083-m228-22-193.txt

Index "enumeration constructor" (as text, not the syntax term)
 on pages 54, 91 (definition), and 116.
Index "enum constructor" (text) on pages 54 and 116.

[xiii] Introduction, Intrinsic procedures, sentence about SPLIT,
 "at time" -> "at a time".

[446] 16.9.210 TOKENIZE, Arguments para, argument FIRST, last sentence,
 "delimitor" -> "delimiter".

[482] 17.11.39 IEEE_SET_FLAG, delete duplicate "Class" paragraph.

===END===

