
Reference number of working document: ISO/IEC JTC1/SC22/WG5 Nxxxx

Date: 2023-01-14

Reference number of document:

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Containers

Technologies de l’information — Langages de programmation — Fortran —
Procédures d’accès aux structures de données

(Blank page)

18 April 2019 Containers in Fortran

Contents
0 Introduction . 1

0.1 History . 1
0.2 The problems to be solved . 1
0.3 What this technical specification proposes . 2

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1
1.3 Nonnormative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Expressions of type SECTION . 4
2.4 Input/output of objects of type SECTION . 5
2.5 Updater subprogram . 5
2.6 Auxiliary dummy argument for functions . 8
2.7 Revised syntax to reference functions . 9
2.8 Interfaces . 9
2.9 Container . 11
2.10 Instance variable and activation record . 12
2.11 Reference to accessors . 14
2.12 Executing container procedures . 16
2.13 Relationship to DO CONCURRENT . 17
2.14 Argument association of instance variables . 17
2.15 Pointer association of instance variables . 17
2.16 Compatible extension of substring range . 17
2.17 Compatible extension of subscript triplet . 18
2.18 Compatible extension of vector subscript . 18
2.19 SECTION AS ARRAY (A) . 18
2.20 Existing intrinsic functions as updaters . 19

3 Extended example . 20
3.1 General . 20
3.2 A derived type to represent a sparse matrix . 22

4 Required editorial changes to ISO/IEC 1539-1:2019(E) 25

Foreword

This technical specification specifies an extension to the computational facilities of the programming
language Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2019(E).

No copyright i

Containers in Fortran 18 April 2019

(Blank page)

ii No copyright

18 April 2019 Containers in Fortran

0 Introduction

0.1 History1

1 Very early after the use of software began, it was realized that the cost of a change to a program is more2

likely to be proportional to the size of the program than the magnitude of the change.3

2 John Backus sold FORTRAN to IBM president Tom Watson on the proposition that it would reduce4

labor costs. Tom Watson sold it to IBM customers on the proposition that it would reduce labor costs.5

3 Within fifteen years, several people realized that the failure of high-level programming languages to6

reduce the cost of a change to a program, from being proportional to the size of the program to being7

proportional to the magnitude of the change, was because the details of the implementation of each data8

structure were exposed in the syntax used to reference the representation of the data.9

4 Two fundamentally different methods were proposed to solve the problem.10

5 In 1970 Douglas T. Ross proposed that the same syntax ought to be used to refer to every kind of data11

object, and to procedures.12

6 Charles M. Geschke and James G. Mitchell repeated this proposal in 1975.13

7 In 1972 David Parnas proposed that this could largely be achieved by encapsulating all operations on a14

data structure in a family of related procedures. Thereby, the difference to reference each kind of data15

object, or a procedure, would be isolated into the collection of procedures that implement operations on16

the data.17

8 No major programming language has been revised to incorporate the principles advocated by Ross, or18

by Geschke and Mitchell.19

9 Rather, it has apparently been judged that the problem can be adequately solved by program authors20

employing the principles advocated by Parnas.21

10 Some languages have provided facilities that reduced the difference of syntax between different kinds of22

data, and procedures. Univac FORTRAN V implemented statement functions as macros. As a conse-23

quence, a reference to a statement function was permitted as the variable in an assignment statement if24

its body would have been permitted. This was used to provide some of the functionality of derived-type25

objects. The “component name” appeared in the syntactic position of a function name, and the “object”26

appeared in the syntactic position of an argument.27

11 POP-2 had procedures called updaters that could be invoked to receive a value in a variable-definition28

context.29

12 Python has procedures called setters that can be invoked to receive a value in a variable-definition30

context. Python setters can only be type-bound entities.31

13 This technical specification proposes an abstraction mechanism related to POP-2 updaters, and python32

setters, called updaters.33

0.2 The problems to be solved34

1 There are two problems with the Parnas agenda.35

2 First, it is difficult and costly to apply completely and consistently. If it hasn’t been applied carefully36

and completely during the original development of a program, the program is difficult to modify, and37

the cost of modification will more likely be proportional to the size of the program rather than the38

No copyright 1

Containers in Fortran 18 April 2019

magnitude of the change.1

3 Second, it is potentially inefficient, because all operations on data structures are encapsulated within2

procedures. Awareness of this potential is an incentive not to use it carefully and completely.3

0.3 What this technical specification proposes4

1 This technical specification extends the programming language Fortran so that a data object and its5

associated procedures can be defined together. This allows the representation of a data abstraction to6

be changed between a data object and a procedure without changing the syntax of any references to it.7

2 The facility specified by this technical specification is compatible to the computational facilities of Fortran8

as standardized by ISO/IEC 1539-1:2019(E).9

2 No copyright

18 April 2019 Containers in Fortran

Information technology – Programming Languages – Fortran1

Technical Specification: Containers2

1 General3

1.1 Scope4

1 This technical specification specifies an extension to the programming language Fortran. The Fortran5

language is specified by International Standard ISO/IEC 1539-1:2019(E) : Fortran. The extension allows6

the representation of a data object and its associated procedures to be defined together. The new entity7

allows the representation of a data object to be changed between an array and procedures, or between8

a structure component and procedures, without changing the syntax of references to that data object.9

2 Clause 2Requirementssection.13 of this technical specification contains a general and informal but precise10

description of the extended functionalities. Clause 3Extended examplesection.113 contains an extended11

example of the use of facilities described in this technical specification.12

1.2 Normative References13

1 The following referenced documents are indispensable for the application of this document. For dated14

references, only the edition cited applies. For undated references, the latest edition of the referenced15

document (including any amendments) applies.16

2 ISO/IEC 1539-1:2019(E) : Information technology – Programming Languages – Fortran; Part 1: Base17

Language18

1.3 Nonnormative References19

1 The following references are useful to understand the history or facilities proposed in this document.20

2 R. M. Burstall and R. J. Popplestone, POP-2 Reference Manual, Department of Machine Intelligence21

and Perception, University of Edinburgh.22

3 Charles M. Geschke and James G. Mitchell, On the problem of uniform references to data structures,23

IEEE Transactions on Software Engineering SE-2, 1 (June 1975) 207-210.24

4 David Parnas, On the criteria to be used in decomposing systems into modules, Comm. ACM 15, 1225

(December 1972) 1053-1058.26

5 D. T. Ross, Uniform referents: An essential property for a software engineering language, in Software27

Engineering 1 (J. T. Tou, Ed.), Academic Press, (1970) 91-101.28

6 R. D. Tennent, Principles of Programming Languages (C. A. R. Hoare Ed.), Prentice-Hall Inter-29

national Series in Computer Science (1981), ISBN:0137098731, page 114.30

No copyright 1

Containers in Fortran 18 April 2019

2 Requirements1

2.1 General2

1 The following subclauses contain a general description of the extensions to the syntax and semantics3

of the Fortran programming language to provide that the representation of a data abstraction can be4

changed between an array and a procedure, or between a structure component and a procedure, without5

changing the syntax of references to that data object.6

2.2 Summary7

2.2.1 General8

1 This technical specification defines a new entity called a container. A container defines an activation9

record and at least two kinds of procedures: a function and a new kind of procedure called an updater.10

Together, functions and updaters define a generic procedure of the same name as the container, called11

an accessor. An accessor can be invoked in a data reference context, in which case one of its functions is12

executed and its result is a value. It can also be invoked in a variable definition context, in which case13

one of its updaters is executed and the value is associated with the acceptor variable of the updater.14

There is presently nothing comparable in Fortran, but updaters or accessors have been provided in other15

languages such as Mesa, POP-2, and Python. This dual nature of invocation allows the representation16

of a data abstraction to be changed from a data object to function and updater procedures, without17

changing the syntax of references to it.18

2 In addition to an accessor, a container can provide subroutines, for initialization or other problem-specific19

purposes.20

3 The type SECTION is defined. Objects of type SECTION have the same properties as section subscripts.21

The constructor for type SECTION has the same syntax as a section triplet. This allows variables and22

procedure dummy arguments that have those properties, which in turn allows the representation of a23

data abstraction to be changed between an array, and a container and its accessor, without changing24

the syntax of references to it.25

2.2.2 Type SECTION26

1 The purpose of type SECTION is to allow variables, constants, named constants, and dummy arguments27

that represent array section descriptors. Therewith, a data object reference, or the variable in an28

assignment to an array section, can be replaced by a function or updater reference in which the array29

section index in the variable is replaced by a SECTION constructor actual argument, without any change30

to the syntax.31

2 The identifier of type SECTION is defined in the intrinsic module ISO Fortran Env.32

3 The behavior of objects of type SECTION is as if SECTION were a derived type with one kind type33

parameter and five protected components. The effect is as if it were declared using the following type34

declaration, which assumes existence of the PROTECTED attribute:35

4 type :: SECTION (IK)36

integer, kind :: IK = kind(0)37

integer(ik), protected :: LBOUND = -huge(0_IK)38

logical, protected :: LOWER_BOUNDED39

integer(ik), protected :: UBOUND = huge(0_IK)40

logical, protected :: UPPER_BOUNDED41

integer(ik), protected :: STRIDE = 142

2 No copyright

18 April 2019 Containers in Fortran

end type SECTION1

5 The integer parts are the lower bound, the upper bound, and the stride. The logical parts indicate2

whether a value appeared in the type constructor, for the lower bound or the upper bound. The3

type SECTION is not a sequence derived type. Therefore, objects of type SECTION cannot be storage4

associated. A processor might represent one differently from a derived type. For example, the LOWER -5

BOUNDED and UPPER BOUNDED components might be represented by two bits within one byte,6

or a reference to UPPER BOUNDED (LOWER BOUNDED) might be implemented as a reference to7

a zero-argument inlined function for which the result is true if and only if UBOUND == huge(0 kind)8

(LBOUND == −huge(0 kind)).9

6 Because the type SECTION is a parameterized derived type, if a procedure has a dummy argument of10

type SECTION, it shall have explicit interface where it is referenced (subclause 15.4.2.2, item (3)(e), in11

ISO/IEC 1539-1:2019(E)).12

2.2.3 Constructor for values of type SECTION13

1 An object of type SECTION can be constructed using the same syntax as subscript-triplet. If the stride14

is not specified its value is 1.15

NOTE 2.1

Although an object of type SECTION can be constructed using the same syntax as a constructor
for an object of derived type, it is important that the constructor for objects of type SECTION
can be the same as subscript-triplet, not only the same as a constructor for an object of derived
type.

2.2.4 Constructing an array from a SECTION object16

1 The type SECTION has a type-bound procedure named SECTION AS ARRAY that produces a rank-17

one integer array whose values are the same as would be denoted by an equivalent subscript triplet. It18

shall not be invoked if LOWER BOUNDED or UPPER BOUNDED has the value false.19

2.2.5 Definition of containers20

1 A new program unit called a CONTAINER is defined. A container defines an activation record, one or21

more functions to reference the activation record, one or more updaters to modify the activation record,22

an accessor composed of those functions and updaters, and it may define subroutines to initialize the23

activation record, or for other problem-dependent purposes.24

2 When an accessor is referenced to provide the value of a primary during evaluation of a expression, one25

of its functions is invoked, and the result value is provided in the same way as by a function subprogram.26

When an accessor is referenced in a variable definition context, one of its updaters is invoked, and the27

value to be defined is transferred to the updater in its acceptor variable.28

2.2.6 Syntax to reference accessor procedures29

1 A reference to an accessor is permitted where a reference to or definition of a variable is permitted.30

NOTE 2.2

For example, an accessor reference can appear within an expression, as the variable in an intrinsic
assignment statement, in an input/output list in either a READ or WRITE statement, in place of
a variable in a control information list. . . .

No copyright 3

Containers in Fortran 18 April 2019

2 An accessor is referenced using an extension of the syntax to reference a function. The extended syntax is1

the same as is used to reference an array or a character substring, which in turn allows the representation2

of an object to be changed between a function and updater, and a character scalar or an array, without3

changing the syntax of references to it.4

3 Where a reference appears in a value reference context, an accessor function is invoked to produce5

a value. Where it appears in a variable definition context, an accessor updater is invoked to accept a6

value. Where it appears as an actual argument associated with a dummy argument, a temporary variable7

having the same type, kind, and rank as the accessor functions and updaters is created, and associated8

with the corresponding dummy argument. The dummy argument shall not have assumed rank. If9

the dummy argument has INTENT(IN), an accessor function is invoked to produce a value before the10

procedure to which it is an actual argument is invoked. If the dummy argument has INTENT(OUT),11

an accessor updater is invoked to accept a value after the invoked procedure completes execution. If the12

dummy argument has INTENT(INOUT) or unspecified intent, an accessor function function is invoked13

to produce a value before the procedure to which it is an actual argument is invoked, and an accessor14

updater is invoked to accept a value after the invoked procedure completes execution. If the dummy15

argument does not have INTENT(IN) and is allocatable, the temporary variable is also allocatable.16

4 An accessor function or updater is not required to have nonoptional dummy arguments. Unlike the syntax17

for functions, where it is referenced without actual arguments, it need not include empty parentheses.18

This permits an accessor and scalar variable to be interchanged, or references to or definition of a whole19

array to be replaced by references to functions and updaters of an accessor.20

5 The result variables of accessor functions cannot be procedure pointers. Therefore,21

• where a procedure is referenced with an instance variable as an actual argument that corresponds22

to an instance variable dummy argument, the instance variable is the argument; the accessor is23

not invoked to produce or receive a value corresponding to the dummy argument, and24

• where an instance variable appears as the instance-target in a pointer assignment statement, the25

function part of the accessor is not invoked.26

Unresolved Technical Issue Concerning procedure pointers result variables

C1524b (below) might allow the result variables of accessor functions to be procedure pointers.

2.3 Expressions of type SECTION27

1 The syntax of expr is extended to include the constructor for objects of type SECTION.28

R1022 expr is level-6-expr29

or section-constructor30

R1022a level-6-expr is [level-6-expr defined-binary-op] level-5-expr31

R758a section-constructor is [scalar-int-expr] : [scalar-int-expr] [: scalar-int-expr]32

2 A section-constructor constructs an object of type SECTION. The value of the kind type parameter of33

the object is the kind type parameter of the scalar-int-expr that has the greatest number of decimal34

digits, if any scalar-int-expr appears. Otherwise, the value of the kind type parameter is the value of35

default integer kind. The first scalar-int-expr provides the lower bound for the section. If it does not36

appear, the value of the LBOUND component of the value is −HUGE(0 kind). The second scalar-int-37

expr provides the upper bound for the section. If it does not appear, the UBOUND component of the38

value is HUGE(0 kind). The third provides the stride. If it does not appear the value of the stride is 1.39

Its value shall not be zero. The LOWER BOUNDED component of the value is true if and only if the40

4 No copyright

18 April 2019 Containers in Fortran

first scalar-int-expr appears. The UPPER BOUNDED component of the value is true if and only if the1

second scalar-int-expr appears.2

3 No intrinsic operations are defined for objects of type SECTION.3

4 Intrinsic assignment is defined for objects of type SECTION. The kind type parameter values of the4

variable and expr are not required to be the same. The components of expr are assigned to corresponding5

components of variable as if by intrinsic assignment, except that if the LOWER BOUNDED (UPPER -6

BOUNDED) component of expr is false, the LBOUND (UBOUND) component of variable is assigned7

the value −HUGE(variable%LBOUND) (HUGE(variable%UBOUND)).8

5 Where an object of type SECTION appears as an actual argument to a specific procedure, the value of9

its kind type parameter shall be the same as the value of the kind type parameter of the corresponding10

dummy argument if the dummy argument does not have the VALUE attribute. If the dummy argument11

has the VALUE attribute, the actual argument is assigned to the dummy argument as if by intrinsic12

assignment.13

2.4 Input/output of objects of type SECTION14

1 When an object of type SECTION appears as a variable in an input-item-list or output-item-list, it is15

processed as a derived-type object using a type-bound defined input/output procedure, defined in the16

intrinsic module ISO Fortran Env. If it is a variable in an input-item-list and the value of the LOWER -17

BOUNDED (UPPER BOUNDED) component of the input value is false, the LBOUND (UBOUND)18

component is assigned the value −HUGE(variable%LBOUND) (HUGE(variable%UBOUND)), regard-19

less of the value of any input item that is provided. The value of the stride component shall not be20

zero. If an input item is processed by list-directed formatting and no value is provided for the LBOUND21

(UBOUND) component, it is assigned the value−HUGE(variable%LBOUND) (HUGE(variable%UBOUND)).22

If no value is provided for the STRIDE component, it is assigned the value 1.23

2.5 Updater subprogram24

2.5.1 Syntax25

1 An updater subprogram defines a procedure for which references can appear in variable-definition con-26

texts.27

R1537a updater-subprogram is updater-stmt28

[specification-part]29

[execution-part]30

[internal-subprogram-part]31

end-updater-stmt32

R1537b updater-stmt is [prefix] UPDATER updater-name33

[([dummy-arg-name-list])34

[(aux-dummy-arg-name)]]35

[ACCEPT (acceptor-arg-name]36

R1537c acceptor-arg-name is name37

R1537d end-updater-stmt is END [UPDATER [updater-name]]38

C1567a (R1537c) acceptor-arg-name shall not be the same as updater-name. It shall have the VALUE39

or INTENT(IN) attributes. It shall not have the ALLOCATABLE or POINTER attribute.40

C1567b (R1537a) aux-dummy-arg-name shall be a scalar of type SECTION and have the INTENT(IN)41

No copyright 5

Containers in Fortran 18 April 2019

or VALUE attributes. It shall not have the POINTER or ALLOCATABLE attribute.1

C1537c (R1537d) If an updater-name appears in the end-updater-stmt, it shall be identical to the2

updater-name specified in the updater-stmt.3

C1567d (R1537a) An ENTRY statement shall not appear within an updater subprogram.4

R503 external-subprogram is . . .5

or updater-subprogram6

R1408 module-subprogram is . . .7

or updater-subprogram8

2 The type and type parameters (if any) of the value accepted by the updater may be specified by a type9

specification in the UPDATER statement or by the name of the acceptor variable appearing in a type10

declaration statement in the specification part of the updater subprogram. They shall not be specified11

both ways. If they are not specified either way, they are determined by the implicit typing rules in12

effect within the updater subprogram. If the acceptor variable is an array, this shall be specified by13

specifications of the acceptor variable name within the specification part of the updater subprogram.14

The specifications of the acceptor variable attributes, the specifications of the dummy argument and15

auxiliary dummy argument attributes, and the information in the UPDATER statement collectively16

define the characteristics of the updater.17

3 If ACCEPT appears, the name of the acceptor variable is acceptor-arg-name and all occurrences of the18

updater name in the execution-part statements in its scope refer to the updater itself. If ACCEPT does19

not appear, the name of the acceptor variable is updater-name and all occurrences of the updater name20

in the execution-part statements in its scope refer to the acceptor variable.21

4 The acceptor variable is considered to be a dummy argument. Unless it has the VALUE attribute, it is22

assumed to have the INTENT(IN) attribute, and this may be confirmed by explicit specification.23

NOTE 2.3

If ACCEPT (acceptor-arg-name) appears, the acceptor variable is required to have the IN-
TENT(IN) or VALUE attributes.

2.5.2 Updater reference24

1 The syntax to reference an updater is similar to the syntax to reference a function. If an updater is25

referenced without arguments, empty parentheses are not required to appear.26

R1521b updater-reference is procedure-designator [([actual-arg-spec-list])]27

[(aux-actual-arg)]28

C1525c (R1521b) procedure-designator shall designate an updater procedure.29

C1525d (R1521b) If aux-actual-arg appears and the designated procedure has an actual argument of30

type SECTION, ([actual-arg-spec-list]) shall appear.31

2 An updater can only be invoked in a variable-definition context.32

R902 variable is . . .33

or updater-reference34

C902a (R902) A variable shall not be updater-reference except where it appears in a variable-definition35

context.36

6 No copyright

18 April 2019 Containers in Fortran

3 When an updater is invoked, the following events occur, in the order specified:1

1. Actual arguments, if any, are evaluated.2

2. Actual arguments are associated to corresponding dummy arguments. The value to define is3

considered to be an actual argument, and is associated to the updater’s acceptor variable.4

3. The updater is invoked.5

4. Execution of the updater is completed by execution of a RETURN statement or by execution of6

the last executable construct in the execution-part.7

NOTE 2.4

One way to think about an updater reference is that it is a time-reversed function reference.

2.5.3 Generic interface8

1 Generic interfaces are extended to allow updaters. Further, a function and an updater can have the9

same generic name. A generic identifier for an updater shall be a generic name. See subclause 2.8Inter-10

facessubsection.52.11

2.5.4 Example12

NOTE 2.5

This example illustrates the use of a function and updater together to access a complex variable.

Assume that a program contains a complex variable represented in Cartesian form, i.e., using the
intrinsic COMPLEX type.

complex :: Z

z = 0.75 * sqrt(2.0) * cmplx (1.0, 1.0) ! Modulus is 1.5

print *, ’Z = ’, z

print *, ’Abs(Z) = ’, z ! Prints approximately 1.5

Assume it is necessary somewhere to change the modulus of the variable, but not its phase:

z = newModulus * (z / abs(z))

print *, ’Revised Z = ’)

This would be clearer using an updater:

pure real updater Set_Complex_Abs (Z), accept (V)

complex, intent(inout) :: Z

z = v * (z / abs(z))

end updater Set_Complex_Abs

generic :: Abs => Set_Complex_Abs

print *, ’Abs(Z) = ’, z ! Prints approximately 1.5

abs(z) = 0.5 * sqrt(2.0)

print *, ’Revised Z = ’, z ! prints approximately 1.0, 1.0

No copyright 7

Containers in Fortran 18 April 2019

NOTE 2.5 (cont.)

Assume this happens sufficiently frequently that the program would be more efficient if complex
numbers were represented in polar form:

type :: Polar_Complex

real :: Modulus

real :: Phase ! Radians

end type Polar_Complex

pure real function Get_Polar_Abs (Z)

type(polar_complex), intent(in) :: Z

get_polar_abs = z%modulus

end function Set_Polar_Abs

pure real updater Set_Polar_Abs (Z) accept (V)

type(polar_complex), intent(inout) :: Z

z%modulus = v

end updater Set_Polar_Abs

pure real updater Set_Cartesian_Abs (Z) accept (V)

complex, intent(inout) :: Z

z = v * (z / abs(z))

end updater Set_Cartesian_Abs

generic :: Abs => Get_Polar_Abs, Set_Polar_Abs, Set_Cartesian_Abs

type(polar_complex) :: Z

complex :: Z

z = polar_complex (modulus=1.5, phase=atan(1.0))

print *, ’Z = ’, z

print *, ’Abs(Z) = ’, abs(z) ! prints 1.5

abs(z) = 0.5 * sqrt(2.0) ! Change the modulus but not the phase

print *, ’Revised Abs(z) = ’, abs(z) ! prints approximiately 0.7071

Notice that the statement

abs(z) = 0.5 * sqrt(2.0)

is the same in both cases. This is a simple example of the principles described by Ross, and by
Geschke and Mitchell. Providing the UPDATER subprogram allows to illustrate the principles
described by Parnas. In all cases, the cost to modify the program is more likely to be proportional
to the magnitude of the change than to the size of the program.

An extended example illustrating the application to a sparse matrix appears in clause 3Extended
examplesection.113.

2.6 Auxiliary dummy argument for functions1

1 To allow a reference to a character variable to be replaced by a function reference, without change to the2

syntax, a function may have an auxiliary argument that appears in the position of a substring designator.3

8 No copyright

18 April 2019 Containers in Fortran

R1530 function-stmt is [prefix] FUNCTION function-name1

[([dummy-arg-name-list])2

[(aux-dummy-arg-name)]] [suffix]3

C1561b (R1530) aux-dummy-arg-name shall be a scalar of type SECTION and have the INTENT(IN)4

or VALUE attributes. It shall not have the POINTER or ALLOCATABLE attribute.5

2.7 Revised syntax to reference functions6

1 To allow a whole-array reference to be replaced by a function reference, without change to the syntax,7

a function that has no non-optional arguments can be referenced without an empty argument list in8

parentheses.9

2 To allow a reference to a character variable to be replaced by a function reference, without change to the10

syntax, a function may have an auxiliary argument that appears in the position of a substring designator.11

R1520 function-reference is procedure-designator [([actual-arg-spec-list])]12

[(aux-actual-arg)]13

C1524a (R1520) If (actual-arg-spec-list) and (aux-actual-arg) do not appear, procedure-designator14

shall have explicit interface.15

C1524b (R1520) If (actual-arg-spec-list) and (aux-actual-arg) do not appear, and the result of the16

function is a procedure pointer having the same interface as the function, procedure-designator17

shall not be an actual argument or proc-target.18

NOTE 2.6

The effect of C1524b is that if a procedure-designator appears as an actual argument or proc-target,
and is not followed by (actual-arg-spec-list) and (aux-actual-arg), it is not a function reference;
it designates the function, which then corresponds to the actual argument, or becomes associated
with the proc-pointer-object. If it is desired to invoke such a function without (actual-arg-spec-
list) and (aux-actual-arg), and use the result as an actual argument or proc-target, enclose the
function-reference in parentheses.

Unresolved Technical Issue concerning procedure pointer function results

C1524b might allow the results of accessor functions to be procedure pointers.

C1524c (R1520) If aux-actual-arg appears and the designated procedure has an actual argument of type19

SECTION, ([actual-arg-spec-list]) shall appear.20

2.8 Interfaces21

2.8.1 Revised syntax of interface blocks22

1 The syntax of interface blocks is extended to allow updater interface bodies.23

R1505 interface-body is function-interface24

or subroutine-interface25

or updater-interface26

R1505a function-interface is function-stmt27

[specification-part]28

end-function-stmt29

No copyright 9

Containers in Fortran 18 April 2019

R1505b subroutine-interface is subroutine-stmt1

[specification-part]2

end-subroutine-stmt3

R1505c updater-interface is updater-stmt4

[specification-part]5

end-updater-stmt6

2.8.2 Generic interfaces7

1 Generic interfaces are extended to allow updaters and instance references (2.10.2Instance variable dec-8

larationsubsubsection.75).9

R1507 specific-procedure is procedure-name10

or instance-reference11

C1509 (R1501) An interface-specification in a generic interface block shall not specify a procedure or12

instance reference that was previously specified in any accessible interface with the same generic13

identifier.14

C1509a (R1508) A generic-spec that is not generic-name shall not identify an instance reference.15

C1510 (R1510) A specific-procedure in a GENERIC statement shall not specify a procedure or instance16

reference that was specified in any accessible interface with the same generic identifier.17

2 If a generic interface specifies an instance reference for a container, it specifies that all of the specific18

procedures in the accessor identified by the instance variable name are accessible using that generic19

identifier.20

3 A generic interface can specify specific procedures that are subroutines, functions, updaters, and instance21

references. Two procedures in a generic interface are distinguishable if they are not defined by the same22

kind of program unit. For example, a function and updater are distinguishable. The form of reference23

specifies the kind of procedure to be invoked. For example, a function or updater cannot be invoked by24

a CALL statement.25

NOTE 2.7

The only way to specify a generic identifier for an instance reference is by using a GENERIC
statement. There is no syntax to specify a generic identifier for an instance reference using an
interface block.

Even though an instance reference identifies a container (2.9Containersubsection.60), which speci-
fies a generic interface for all its contained procedures, an instance reference is nonetheless allowed
as a specific name in a generic interface. This allows, for example, to combine references for in-
stances of containers that have different kind type parameters. This is especially important in
conjunction with facilities for generic programming.

2.8.3 Explicit interface26

1 A subprogram shall have explicit interface where it is referenced if it has a dummy procedure argument27

that is an updater or an instance reference.28

10 No copyright

18 April 2019 Containers in Fortran

2.9 Container1

2.9.1 Container definition2

1 A container defines an activation record, and may define subroutines, functions, updaters, and an acces-3

sor.4

2 A container definition is similar to a derived type definition. One important difference is that procedures5

are defined within it, not bound to it. Its specification part declares and defines entities within instance6

variables. Procedures defined within its accessor-subprogram-part have access to instance variables, and7

entities within them, using host association.8

R1526a container-def is container-stmt9

[specification-part]10

container-subprogram-part11

end-container-stmt12

R1526b container-stmt is CONTAINER [, access-spec] [::] container-name13

[(type-param-name-list)]14

R1526c container-subprogram-part is contains-stmt15

[container-subprogram . . .]16

R1526d container-subprogram is function-subprogram17

or subroutine-subprogram18

or updater-subprogram19

R1526e end-container-stmt is END [CONTAINER [container-name]]20

C1551a (R1526c) If container-name appears in the end-container-stmt, it shall be identical to the21

container-name specified in the container-stmt.22

C1551b (R1526a) The SAVE attribute shall not be specified for a variable declared within the specification-23

part of a container.24

C1551c (R1526a) The internal-subprogram-part shall contain at least one function and at least one25

updater.26

3 If the declaration of a variable in the specification part of a container includes initialization, the effect is27

as it were component-initialization. Instantiation of an instance variable includes default initialization28

of its variables, as if the instance variable were a derived-type object. The appearance of initialization29

does not imply the SAVE attribute.30

4 A container can be declared within the specification part of a main program, subprogram, container, or31

module.32

R508 specification-construct is . . .33

or container-def34

2.9.2 PUBLIC and PRIVATE entities of a container35

1 An access-stmt may appear within a container.36

C869 An access-stmt shall appear only in the specification-part of a module or container. Only one37

accessibility statement with an omitted access-id is permitted in the specification-part of a38

module or container.39

No copyright 11

Containers in Fortran 18 April 2019

C869a If an access-stmt appears in a container, the entities specified by access-id shall be container1

procedures or ASSIGNMENT(=) generic identifiers.2

2 The default accessibility of container procedures and ASSIGNMENT(=) generic identifiers in a container3

is PUBLIC.4

2.9.3 Container subroutine5

1 A container subroutine is a subroutine subprogram that is defined within the container definition. It6

can be used to initialize an instance variable of the container, to which it has access by host association,7

or for other problem-dependent purposes.8

2.9.4 Container function9

1 A container function is a function subprogram that is defined within the container definition. Its usual10

but not exclusive purpose is to access an instance variable of the container, to which it has access by host11

association. The function subprogram dummy argument list is extended by one additional argument12

so that the syntax to reference a function can be compatible with the syntax to reference a character13

variable.14

R1530 function-stmt is [prefix] FUNCTION function-name15

([dummy-arg-name-list]) [(aux-dummy-arg-name)]16

[suffix]17

R1530a aux-dummy-arg-name is name18

C1561a (R1530a) aux-dummy-arg-name shall be a scalar of type SECTION and have the INTENT(IN)19

or VALUE attributes. It shall not have the POINTER or ALLOCATABLE attribute.20

NOTE about C1563

A container function within an internal container may have an internal subprogram.

2.9.5 Container updater21

1 A container updater is an updater subprogram that is defined within the container program unit. Its22

usual but not exclusive purpose is to modify an instance variable of the container, to which it has access23

by host association.24

2.9.6 Pure container subprograms25

1 Variables that are declared in the specification part of the container, which are accessible by host26

association within container subprograms, may appear in variable definition contexts within those pure27

container subprograms. Variables that are not declared in the specification part of the container, but28

that are accessed by host or use association within pure container subprograms, shall not appear in29

variable definition contexts within those pure container subprograms.30

2.10 Instance variable and activation record31

2.10.1 Activation record32

1 The purpose of an activation record is collect the definitions of the data entities and methods to represent,33

reference, update, and otherwise manipulate a data structure or container. This allows more than one34

data structure or container to have the same representation and methods to reference it, update its35

contents, and otherwise manipulate it.36

12 No copyright

18 April 2019 Containers in Fortran

2 If a data structure were represented by a data object, a function, and a free-standing updater procedure,1

the function and updater would access the data object by host association. Accessing a function and2

free-standing updater by USE association does not change the entities to which they have access by3

host or USE association. Therefore, it would not be possible to have more than one data object, except4

by physically copying the program unit text, effectively copying it using INCLUDE statements, or5

instantiating it using a generic mechanism such as a parameterized module, template, or macro.6

3 The internal state of a container is represented by an activation record.7

4 The activation record is declared by the variable declarations within the specification part of the con-8

tainer, as if it were the definition of a private non-sequence derived type with private components.9

2.10.2 Instance variable declaration10

1 An instance variable represents an activation record.11

NOTE 2.8

Instance variables allow a single collection of functions, updaters, and subroutines to have inde-
pendent persistent states that are not represented only by their arguments, and variables accessed
by host or use association. Without instance variables, functions and updaters are limited to op-
erations on their arguments, or variables they access by host or use association. Without instance
variables, to have independent persistent states, other than by argument association, it is necessary
to copy data declarations, functions, updaters, and subroutines to different scoping units, either
physically or by using INCLUDE statements, or by instantiating a program unit using a generic
mechanism such as a parameterized module, template, or macro. A function or updater that is
accessed by host or use association is the same entity in every scoping unit, and accesses the same
scope by host association.

If it is necessary to revise a program so that several similar objects that need independent persistent
states are represented by functions and updaters instead of variables, it is necessary either to copy
the procedures to different scoping units, one for each persistent state, provide the persistent state
explicitly using additional arguments, or use instance variables. Scoping units are not allocatable,
so the “copy” strategy is limited to fixed numbers of persistent states. If the persistent states were
to be provided using argument association, each persistent state, a sparse matrix for example,
would need to be provided as an argument in addition to, for example, subscripts. This would
require all references to and definitions of each original entity to be revised.

2 An instance variable is not a derived-type object. Entities within the specification part of the container12

are not accessible as if they were components, using structure-component reference syntax as described13

in subclause 9.4.2 of ISO/IEC 1539-1:2019(E).14

Unresolved Technical Issue concerning access to container specification parts

It is possible in principle to expose entities within the specification part of the container as if they
were components of an object of derived type. Whether this additional complication is desirable
can be decided in due course.

R703 declaration-type-spec is . . .15

or instance-declaration16

R1518a instance-declaration is CONTAINER (container-name) [[, instance-attr-spec] ::]17

instance-variable-name18

R1518b instance-attr-spec is GENERIC (generic-name)19

or attr-spec20

No copyright 13

Containers in Fortran 18 April 2019

C1521a (R1518b) An attr-spec shall not be ASYNCHRONOUS, CODIMENSION, CONTIGUOUS, DI-1

MENSION, EXTERNAL, INTRINSIC, language-binding-spec, PARAMETER, or VOLATILE.2

NOTE 2.9

An instance variable is always a noncoarray scalar.

3 If GENERIC (generic-name) appears it is a generic identifier for the functions and updaters defined3

within the container, and instance-variable-name identifies the activation record. If GENERIC (generic-4

name) does not appear, instance-variable-name is a generic identifier for the functions and updaters5

defined within the container and the instance variable is not accessible by instance-variable-name.6

4 An instance variable shall not be a subobject of a coarray or coindexed object.7

Unresolved Technical Issue Concerning coarrays

It might be reasonable to allow an instance variable to be a subobject of a coarray, so long as it is
not referenced as a coindexed object.

2.10.3 Instance variable reference8

1 An instance variable may be referenced directly using the instance-variable-name in its instance-declaration9

if a generic identifier is specified in the declaration.10

2 If a generic identifier is not specified in the declaration, the instance-variable-name is a generic identifier11

for the functions and updaters in the instance variable’s accessor. It cannot be used to reference the12

instance variable itself. The instance variable is not otherwise accessible, except by host association13

within container procedures for the specified container-name.14

3 When instance-reference is a procedure reference, or is the instance-variable-name in a procedure-15

designator, it specifies which instance variable is accessible by host association within the referenced16

container procedure.17

R1523b instance-reference is instance-variable-name18

or instance-generic-name19

C1529b (R1523b) The instance-variable-name shall be the name of an instance variable that does not20

declare a generic identifier.21

C1529c (R1523b) The instance-generic-name shall be the generic identifier specified in the declaration22

of an instance variable.23

2.11 Reference to accessors24

2.11.1 Syntax to reference accessor procedures25

1 An accessor is referenced using an instance reference, which is either an instance variable for the con-26

tainer, or a generic identifier specified in the declaration of an instance variable for the container.27

2 A reference to an accessor is permitted where a reference to or definition of a variable is permitted.28

Where a reference to an accessor reference appears as an expression it is considered to be a reference29

to a container function subprogram. Where a reference to an accessor appears in a variable definition30

context it is considered to be a reference to a container updater subprogram. The specific function or31

updater is determined using the rules for generic resolution specified in subclause 15.5.5.2 in ISO/IEC32

1539-1:2019(E).33

14 No copyright

18 April 2019 Containers in Fortran

3 The syntax of an accessor reference is an extension of the syntax of a function reference. The extension1

makes it compatible with a scalar reference, an array element reference, a whole array reference, or a2

character substring reference, which in turn allows the representation of a data abstraction to be changed3

between a container and a data object without changing the syntax of references to it.4

R1523a accessor-reference is instance-reference [([actual-arg-spec-list])5

[(aux-actual-arg)]]6

R1523c aux-actual-arg is actual-arg-spec7

C1529a (R1523a) The procedure-designator shall designate an accessor.8

C1529d (R1523c) The aux-actual-arg shall be of type SECTION.9

C1529e (R1523c) If aux-actual-arg appears and the designated procedure has an actual argument of10

type SECTION, ([actual-arg-spec-list]) shall appear.11

4 Unlike a reference to a function, if an instance-reference appears without either actual-args or aux-12

actual-arg it nonetheless specifies invocation of the accessor unless it is an actual argument associated13

with a dummy accessor, or a data-target in a pointer assignment statement. For this reason, a procedure14

shall have explicit interface where it is invoked if it has an accessor dummy argument.15

5 The syntax of designator is extended to allow references to accessors in value-providing and variable16

definition contexts.17

R901 designator is . . .18

or accessor-reference19

6 The syntax of intrinsic assignment already allows reference to an updater part of an accessor in its20

variable-definition context.21

R1032 assignment-stmt is variable = expr22

7 If the variable in assignment-stmt is accessor-reference, the specific updater is determined according to23

specifications in subclause 15.5.5.2 of ISO/IEC 1539-1:2019(E).24

8 Where an updater reference appears as the variable in an intrinsic assignment statement, the rules for25

conformance and conversion specified in subclauses 10.2.1.2 and 10.2.1.3 of ISO/IEC 1539-1:2019(E)26

apply, except that if the acceptor variable is polymorphic, it is not required to be allocatable. The27

usual rules to associate the expr to the acceptor variable apply, as if the expr were an actual argument28

associated to a dummy argument.29

NOTE 2.10

The acceptor variable of an updater does not participate in generic resolution. Alternatively, only
in an assignment statement, the acceptor variable could be used for generic resolution, as if the expr
were an actual argument corresponding to an acceptor variable, considered as a dummy argument.
If generic resolution using the expr fails, or is ambiguous, but resolution using only the arguments
in variable succeeds, the conformance and conversion rules could apply.

9 If the variable in assignment-stmt is instance-reference and the specified instance variable does not30

declare a generic identifier, the variable specifies the instance variable, not a generic identifier of the31

updaters of the accessor. The assignment is intrinsic assignment, as if for variable and expr of derived32

type, if the container does not define assignment, and defined assignment otherwise.33

No copyright 15

Containers in Fortran 18 April 2019

2.11.2 Execution of an accessor1

1 When an accessor is invoked, the following events occur in the order specified.2

(1) The actual arguments are evaluated, and associated with their corresponding dummy argu-3

ments. If the accessor is invoked to accept a value, the value to be accepted is considered4

to be an actual argument associated with the acceptor variable.5

(2) The instance variable is made accessible to the invoked procedure by host association.6

NOTE 2.11

Making the instance variable available by host association uses the same mechanism at that used
to make the host environment of a dummy procedure available by host association.

(3) If the accessor is invoked7

• to produce a value an accessor function is executed, or8

• to accept a value an accessor updater is executed.9

(4) Execution of the function or updater is completed when a RETURN statement is executed,10

or execution of the last executable construct in the execution-part of the accessor function11

or updater is completed.12

2 When the accessor is invoked to accept a value, the accepted object is argument associated with the13

acceptor variable.14

NOTE 2.12

Because an updater’s acceptor variable has the VALUE or INTENT(IN) attribute, it is not possible
for an updater to change the value associated to its acceptor variable.

2.12 Executing container procedures15

2.12.1 Procedure designators16

1 The syntax for procedure designators is extended to facilitate reference to container procedures.17

R1520 procedure-designator is . . .18

or instance-reference [%container-procedure-name]19

R1520a instance-reference is name20

C1525d (R1521c) If %container-procedure-name does not appear, instance-reference shall be the generic21

identifier specified in the declaration of an instance variable, which is either the instance variable22

name if GENERIC does not appear, or the generic-name if GENERIC appears.23

C1525b (R1520) container-procedure-name shall be an accessible name of a procedure defined within24

the container for which instance-reference identifies an instance variable.25

2 Where a container subroutine is invoked using instance-reference without %container-procedure-name,26

instance-reference is a generic identifier for the specific accessor procedures within the container for27

which instance-reference is a generic identifier specified in the declaration of an instance variable, and28

the invoked procedure is a specific function or updater procedure for that generic interface.29

3 Where a container subroutine is invoked using instance-reference%container-procedure-name, the invoked30

procedure is the specific or generic procedure of the container for which instance-reference is an instance31

variable.32

16 No copyright

18 April 2019 Containers in Fortran

4 When a container procedure is invoked, the activation record that it accesses by host association is the1

one designated by the instance-reference.2

2.13 Relationship to DO CONCURRENT3

1 An instance-reference that identifies an instance variable that has SHARED or unspecified locality shall4

not be invoked in more than one iteration of a DO CONCURRENT construct. An instance-reference5

that is a generic identifier shall not have LOCAL INIT locality.6

2.14 Argument association of instance variables7

1 An instance-reference shall be an actual argument if and only if the corresponding dummy argument is8

an instance-reference for the same container. The type parameters of the actual and dummy arguments,9

if any, shall have the same values. The actual argument shall have the GENERIC attribute if and only10

if the corresponding dummy argument has the GENERIC attribute. It is not necessary that the actual11

and dummy argument GENERIC attributes specify the same generic name.12

2.15 Pointer association of instance variables13

1 Pointer association for instance pointer objects is defined.14

R1033 pointer-assignment-stmt is . . .15

or instance-pointer-object => instance-target16

C1031a (R1033) An instance-pointer-object shall be an instance-variable-name that has the POINTER17

attribute if and only if instance-target is an instance-variable-name that has the TARGET18

attribute. The instance-pointer-object and instance-target shall be instance-variable-names for19

instance variables for the same container, and their kind type parameters, if any, shall have the20

same values. The instance-pointer-object shall have the GENERIC attribute if and only if the21

instance-target has the GENERIC attribute.22

2 The length parameters of the instance-pointer-object and instance-target, if any, shall have the same23

values.24

3 It is not necessary that the GENERIC attributes of the instance-pointer-object and instance-target, if25

any, specify the same generic name.26

2.16 Compatible extension of substring range27

1 The type SECTION is provided to allow a dummy argument of type SECTION, so that an accessor can28

replace an array or character variable without requiring change to the references. It seems pointless to29

restrict this only to actual arguments, so it makes sense to allow variables other than dummy arguments30

of type SECTION. Having a variable of type section and not allowing it to be used as a substring-range31

would be silly.32

R910 substring-range is scalar-section-expr33

R910a scalar-section-expr is scalar-expr34

C908a (R910a) The scalar-expr shall be an expression of type SECTION.35

2 The value of the stride of scalar-section-expr shall be 1.36

No copyright 17

Containers in Fortran 18 April 2019

Unresolved Technical Issue 1

Does this introduce a syntax ambiguity?

2.17 Compatible extension of subscript triplet1

1 Having a variable of type section and not allowing it to be used as a subscript-triplet would be silly.2

R921 subscript-triplet is scalar-section-expr3

2 If the LOWER BOUNDED part of the scalar-section-expr is false, the effect is as if the LBOUND4

component were the lower bound of the array. If the UPPER BOUNDED part of the scalar-section-expr5

is false, the effect is as if the UBOUND component were the upper bound of the array.6

NOTE 2.13

Since no operations are defined on objects of type SECTION, the only possible expressions of
type SECTION are section constructors, variables of type SECTION, references to functions or
accessors of type SECTION, or such an expression enclosed in parentheses. Thus A((1:10)) is a
newly-allowed syntax having the same meaning as A(1:10).

2.18 Compatible extension of vector subscript7

1 Having an array of type section and not allowing it to be used as a vector-subscript would be silly.8

R923 vector-subscript is expr9

C927 (R923) A vector-subscript shall be an array expression of rank one, and of type integer or10

SECTION.11

2 If vector-subscript is of type SECTION and the LOWER BOUNDED component of any element is false,12

the effect is as if the LBOUND component were the lower bound of the array. If the UPPER BOUNDED13

component of any element is false, the effect is as if the UBOUND component were the upper bound14

of the array. The resulting vector subscript is then computed as if the elements appeared as arguments15

to a sequence of references to the SECTION AS ARRAY intrinsic function in an array constructor, in16

array element order.17

NOTE 2.14

For example, if A is an array of type SECTION with two elements having values 1:5:2 and 5:1:-2, the
effect is as if the subscript were [SECTION AS ARRAY(A(1)), SECTION AS ARRAY(A(2))],
which has the value [1, 3, 5, 5, 3, 1].

2.19 SECTION AS ARRAY (A)18

1 Description. An array having element values of all elements of a section.19

2 Class. Transformational function bound to the type SECTION from the intrinsic module ISO Fortran -20

Env.21

3 Argument. A shall be a scalar of type SECTION. Neither A%LOWER BOUNDED nor A%UPPER -22

BOUNDED shall be false. The value of A%STRIDE shall not be zero.23

4 Result Characteristics. Rank one array of type integer and the same kind as A. The size of the result24

is the number of elements denoted by the section, which is MAX(0, (A%UBOUND − A%LBOUND +25

A%STRIDE) / A%STRIDE).26

18 No copyright

18 April 2019 Containers in Fortran

5 Result Value. The result value is the same as the expression [(I, I = A%LBOUND, A%UBOUND,1

A%STRIDE)] where I is an integer of the same kind as A.2

NOTE 2.15

The description of the result value makes it clear that SECTION AS ARRAY is not really needed;
it is pure syntactic sugar.

6 Examples. The value of SECTION AS ARRAY (5:1:-2) is [5, 3, 1]. The value of SECTION AS AR-3

RAY (5:1:2) is [] and the size of the result value is zero.4

2.20 Existing intrinsic functions as updaters5

1 The following generic intrinsic functions should be defined to be both functions and updaters. When a6

reference appears in a variable-definition context7

• REAL(X) with complex X is equivalent to X%RE,8

• AIMAG(X) with complex X is equivalent to X%IM,9

• ABS(X)10

– with integer or real X changes the magnitude of X without changing the sign, or11

– with complex X changes the modulus without changing the phase,12

• FRACTION(X) with real X changes the fraction but not the exponent, and13

• EXPONENT(X) with real X changes the exponent but not the fraction.14

No copyright 19

Containers in Fortran 18 April 2019

3 Extended example1

3.1 General2

1 This example illustrates how to replace a dense matrix represented by an array with a sparse matrix3

represented by a container.4

2 Assume a matrix is initially represented by a rank-2 Fortran array:5

3 real :: A(100,100)6

4 References to elements of the array use the array name, followed by two subscripts:7

5 print ’("A(",i0,",",i0,") = ", 1pg15.8)’, i, j, A(i,j)8

6 References to sections of the array use the array name, followed by section designators and subscripts:9

7 print ’("A(:,",i0,") = " / (1p,6g15.8))’, A(:,j)10

8 References to the whole array use the array name:11

9 print ’("A =" / (1p,6g15.8))’, A12

10 Definitions of elements of the array use the array name, followed by two subscripts:13

11 A(i,j) = 4214

12 Definitions of sections of the array use the array name, followed by section designators and subscripts:15

13 A(:,j) = 4216

14 Definitions of the whole array use the array name:17

15 A = 018

16 It is not unusual for the requirements of a problem to change in such a way that a rank-2 Fortran array19

cannot be used because the matrix is too large, but the matrix is sparse, or the matrix is sparse and20

too much time is spent dealing with elements whose values are zero. One could replace the array by a21

derived-type object, and provide a function that has the same name as the array to reference elements22

of the array.23

17 print ’("A(",i0,",",i0,") = ", 1pg15.8)’, i, j, A(i,j)24

18 Without the SECTION type, references to array sections cannot be replaced by function references,25

without changing the syntax of reference.26

19 Using the SECTION type, references to array sections can be replaced by function references, without27

changing the syntax of reference:28

20 print ’("A(:,",i0,") = " / (1p,6g15.8))’, A(:,j)29

21 The first dummy argument of the function A is of type SECTION.30

22 If a function cannot be referenced without (actual-arg-spec-list), references to the whole array cannot31

be replaced by function references, without changing the syntax of reference.32

23 If it is allowed to reference the function without an empty argument list the entire array can be referenced33

20 No copyright

18 April 2019 Containers in Fortran

using a function reference, without changing the syntax of reference:1

24 print ’("A =" / (1p,6g15.8))’, A2

25 But definitions of elements or sections of the array, or the entire array, would need to be replaced by3

calls to subroutines.4

26 call SetElementA (A, i, j, 42.0)5

27 call SetRowA (A, i, 42.0)6

28 call SetA (A, 0.0)7

29 Using an updater, the syntax to define an element is unchanged:8

30 A(i,j) = 429

31 Using an updater in which the first dummy argument is of type SECTION, the syntax to define a column10

is unchanged:11

32 A(:,j) = 4212

33 Using an updater that can be referenced without an empty argument list, the syntax to define an entire13

array is unchanged:14

34 A = 015

35 Defined assignment cannot be used as an “updater” because the subroutine that defines assignment is16

allowed to have only two arguments – the first is associated with the variable in a defined assignment17

statement, and the second is associated with the expr. There is no provision for arguments that play18

the rôle of subscripts.19

36 An l-value as described by Tennent, or a function that returns a pointer associated with an element,20

cannot be used. If it is used in a reference context, and the designated element is zero (and therefore not21

represented), the function could return a pointer associated with a save variable that has the value zero.22

But if the same function is to be used as a “left-hand function” in a variable-definition context, if the23

designated element does not exist, it needs to create one so that it can return a pointer associated with24

an array element into which the value, for example the value of the expr in the assignment statement,25

can be stored. It cannot decide not to store a nonzero value because (a) it does not receive the value26

to be stored, and (b) it does not store the value – it merely provides a pointer associated with a place27

where the assignment statement can store a value.28

37 That it is necessary to replace assignment statements with subroutine calls is one of the reasons for29

Parnas’s observation that the cost of a change to a program is frequently proportional to the size of the30

program rather than to the magnitude of the change.31

38 The purpose of updaters and the revision to functions is to provide the same syntax to reference and32

update a data structure, regardless of its representation and implementation.33

39 The purpose of containers is to allow to provide more than one object, that is represented by persistent34

state and manipulated by functions and updaters, without needing to copy the program unit text phys-35

ically, effectively copy it using INCLUDE statements, or instantiate it using a generic mechanism such36

as a parameterized module, template, or macro.37

No copyright 21

Containers in Fortran 18 April 2019

3.2 A derived type to represent a sparse matrix1

1 A derived type to represent a sparse matrix might be defined by2

type :: Sparse_Element_t ! One element in a sparse matrix3

real :: V ! Element value4

integer :: R ! In which row is the element5

integer :: C ! In which col is the element6

integer :: NR ! Next element in same row7

integer :: NC ! Next element in same col8

end type Sparse_Element_t9

10

type :: Sparse_t ! Representation for a sparse matrix11

integer :: NE = 0 ! Number of elements actually used,<= size(E)12

! Rows and columns are circular lists, so last element points to first:13

integer, allocatable :: Rows(:) ! Last element in each row14

integer, allocatable :: Cols(:) ! Last element in each col15

type(sparse_element_t), allocatable :: E(:) ! nonzero elements16

contains17

procedure :: Create ! Allocate rows, cols, set to zero18

procedure :: Add_Element_Value19

procedure :: Destroy ! Deallocate everything20

procedure :: Empty ! set rows, cols, NE to zero21

procedure :: Find_Element_Value22

....23

final :: Destroy24

end type Sparse_t25

2 Each element in the cols component is the index in the E component of the last nonzero element in the26

corresponding column. Each element in the rows component is the index in the E component of the last27

nonzero element in the corresponding row.28

3 Each element in the E component includes the value of the element, the row and column subscripts of the29

element, the index in E of the next element in the same row, and the next element in the same column.30

A graphical representation of a matrix with eight nonzero elements follows.31

22 No copyright

18 April 2019 Containers in Fortran

Cols

Rows

NR

NC

V

R

C

V

R

C

V

R

C

V

R

C

V

R

C

V

R

C

V

R

C

V

R

C

E

1

4 A container to represent, reference, and define elements of the array might be2

module Sparse_m3

! Type definitions above4

contains5

container Sparse_Matrix6

public7

! type definitions could be here instead of being module entities.8

type(sparse_t) :: Matrix9

contains10

real function Element_Ref (I, J) result (R)11

integer, intent(in) :: I, J ! Row, column of the element12

r = matrix%find_element_value (i, j)13

end function Element_Ref14

real updater Element_Def_Real (I, J) accept (V)15

call matrix%add_element_value (v, i, j) ! doesn’t add zeroes16

end updater Element_Def_Real17

integer updater Element_Def_Int (I, J) accept (V)18

call matrix%add_element_value (real(v), i, j) ! doesn’t add zeroes19

end updater Element_Def_Int20

subroutine Initialize (nRows, nCols, InitNumElements)21

integer, intent(in) :: nRows, nCols22

integer, intent(in), optional :: InitNumElements23

call matrix%create nRows, nCols, InitNumElements)24

end subroutine Initialize25

No copyright 23

Containers in Fortran 18 April 2019

subroutine CleanUp1

call matrix%destroy2

end subroutine CleanUp3

subroutine Empty4

call matrix%empty5

end subroutine Empty6

end container Sparse_Matrix7

end module Sparse_m8

5 The container might be accessed, and an instance variable declared for it, using9

use Sparse_m, only: Sparse_Matrix10

container (Sparse_Matrix) :: A11

6 The instance variable might then be initialized using12

call a (nRows=1000000, nCols=100000)13

7 which references the Initialize container subroutine using generic resolution, or14

call a%initialize (nRows=1000000, nCols=100000)15

8 To fill the array, one could use16

do17

read (*, *, end=9) i, j, v18

a (i, j) = v19

end do20

9 continue21

9 To reference an element of the array, one could use22

print ’("A(",i0,",",i0,") = ", 1pg15.8)’, i, j, a(i,j)23

10 If one later needs a new set of values for an array with the same shape, one could use24

call a%empty25

11 To destroy the array without destroying the container’s activation record, one could use26

call a%cleanUp27

24 No copyright

18 April 2019 Containers in Fortran

4 Required editorial changes to ISO/IEC 1539-1:2019(E)

To be provided in due course.

No copyright 25

	Introduction
	History
	The problems to be solved
	What this technical specification proposes

	General
	Scope
	Normative References
	Nonnormative References

	Requirements
	General
	Summary
	Expressions of type SECTION
	Input/output of objects of type SECTION
	Updater subprogram
	Auxiliary dummy argument for functions
	Revised syntax to reference functions
	Interfaces
	Container
	Instance variable and activation record
	Reference to accessors
	Executing container procedures
	Relationship to DO CONCURRENT
	Argument association of instance variables
	Pointer association of instance variables
	Compatible extension of substring range
	Compatible extension of subscript triplet
	Compatible extension of vector subscript
	SECTION_AS_ARRAY (A)
	Existing intrinsic functions as updaters

	Extended example
	General
	A derived type to represent a sparse matrix

	Required editorial changes to ISO/IEC 1539-1:2019(E)

