
6 May 2000 Page 1 of 6 J3/00-186

Subject: Semantics of the select kind construct are not described, and it appears to be a
mess to use

From: Van Snyder
References: 98-179, 00-179, 00-195

1 Introduction

The select kind construct, apparently intended to be used within a derived type definition to
select different specific procedures to invoke using an object of derived type, depending on the
kind parameters, is not described further than providing its syntax. In particular, the relation
between select kind, inheritance, and procedure overriding is not described.
Furthermore, if I understand it correctly, it is quite cumbersome to use. Suppose one has a
type with three kind parameters, and one anticipates three values for each of those parameters.
If one procedure is needed for each combination of kind type parameter values, this results in
a requirement to bind 27 procedures to the type. It appears to require 92 statements to do
so, using the select kind construct: Three nested select kind constructs are needed. The inner
ones needs 8 statements each – the SELECT CASE and END SELECT statements, 3 CASE
statements, and 3 procedure declaration statements. Each middle one encloses three of these,
and adds five more statements, for a total of 29 statements per middle level case. The outer
one has three middle ones, and adds five more statements, for a total of 92 statements. The
proposal here would allow to use one statement – albeit perhaps using more than one line, but
not 92 lines.
As I understand it, this is a very clumsy explicit replacement for the automatic generic resolution
mechanism. (Actually, the intent is to specify how to generate dispatch tables, but the generic
mechanism could do that more clearly.)
I propose in this paper to replace the select kind construct with the already-developed generic
resolution mechanism.
This strategy has a simple extension to type-bound defined assignment, type-bound defined
operators, type-bound derived-type input/output procedures (see 00-179), and type-bound final
procedures (see 00-195).

2 Specifications

Several specific procedures may be bound to a type by using one binding name. The spe-
cific procedures bound to (not inherited into) a single type-bound procedure name shall be
distinguishable according to the rules for unambiguous generic procedure reference (14.1.2.3).
The PASS OBJ declaration applies to the binding name, and thereby to all of the specific
procedures bound to the type, and all of its extensions, by that name, so we don’t need to
worry about the case that a binding name has PASS OBJ in the parent type but not in the
type being declared, or vice-versa.
The rules for overriding are not much more difficult than in the case of nongeneric type-bound
procedures. We don’t have an explanation for the semantics of the select kind construct, but
I don’t think it will be similer than this: If a specific procedure to be bound to a type by a
particular binding name is not distinguishable from one bound to the parent by the same name,
by using the rules of section 14.1.2.3, it overrides the one inherited from the parent. Otherwise, it

year/00/00-179.pdf.gz
year/00/00-195.pdf.gz
year/00/00-179.pdf.gz
year/00/00-195.pdf.gz

6 May 2000 Page 2 of 6 J3/00-186

extends the set of procedures accessible by applying the generic procedure resolution mechanism
to the binding name.
Now consider procedure invocation. Define the effective set of procedures for a type and binding
name to be the set of procedures inherited for that binding name from the parent of the type,
minus the overridden ones, plus the ones declared in the type. Each procedure in an effective set
has a corresponding one in each effective set for each extension type – either the same procedure
or one that overrides it. First, one procedure is selected from the effective set of procedures for
the declared type of the invoking object and specified binding name, according to the generic
resolution rules. Then the corresponding procedure from the effective set for the dynamic type
of the invoking object and the same binding name is invoked. From an implementors point of
view, there is a separate dispatch table for each distinct generic resolution of a binding name.

3 Syntax

There are (at least) two syntaxes to specify generic type-bound procedures:

1. Specify all procedure bindings by using the PROCEDURE statement. If several bindings
have the same binding name, they create a generic set. This has the advantage of using
only one statement, but the disadvantage of not noticing that overriding was intended
instead of generic extension.

2. Specify non-generic procedure bindings by using the PROCEDURE statement, and gen-
eric bindings by using a new GENERIC statement. This has the disadvantage of requiring
a new statement, and the advantage that the processor can detect one case in which one
mistakenly extends the generic set instead of overriding a non-generic binding – the case
when the name is already non-generic.

3.1 Syntax – first option

The proc-binding is extended to
R440 proc-binding is PROCEDURE[(proc-interface-name)]

[[, binding-attr-list] ::] binding-name
=> NULL()

or PROCEDURE [[, binding-attr-list] ::]
binding-name => procedure-name-list

A binding-name specified in a PROCEDURE statement may be the same as the binding name
specified in another PROCEDURE statement, having the same effect as if the procedure-name-
lists were combined in a single statement.

3.2 Syntax – second option

The PROCEDURE statement is unchanged, and the proc-binding is extended to include
R440 proc-binding is <as at present>

or GENERIC[(proc-interface-name)]
[[, binding-attr-list] ::] binding-name
=> NULL()

6 May 2000 Page 3 of 6 J3/00-186

or GENERIC [[, binding-attr-list] ::]
binding-name => procedure-name-list

A binding-name specified in a PROCEDURE statement shall not be the same as any other
binding name specified within the same derived type definition, no matter whether specified
in a PROCEDURE or GENERIC statement; if it is the same as an inherited one, the present
overriding rules apply – no extension of a generic set is permitted. A binding name specified in
a GENERIC statement may be the same as the binding name specified in another GENERIC
statement, having the same effect as if the procedure-name-lists were combined in a single
statement.

3.3 Straw vote

(a) Use the PROCEDURE statement to specify all type-bound procedure bindings,

(b) Use the PROCEDURE statement to specify non-generic type-bound procedure bindings,
and the GENERIC statement to specify generic type-bound procedure bindings, or

(c) Don’t do this at all. Try to make the select kind construct work instead. I dare you to
try.

Straw
Vote

4 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text. – first option
There are additional edits in section 6 that apply to both options.

R440 proc-binding is PROCEDURE(proc-interface-name) 44:17-20
[[, binding-attr-list] ::] binding-name
=> NULL()

or PROCEDURE [[, binding-attr-list] ::]
binding-name => binding-list

Constraint: The binding name shall not be the same as a binding name in the parent type that
is declared to be NON OVERRIDABLE.

Constraint: If an access-spec is specified for a binding-name, the same access-spec shall be 44:31+
specified for every PROCEDURE statement that specifies the same binding-name
within the type definition.

The same binding name may be used in several procedure binding statements within a single 49:30+
type definition. The effect is as if all of the NULL() bindings were specified by NULL(procedure-
pointer-name) with procedure-pointer-name specifying a procedure pointer with the same inter-
face as the proc-interface-name, and then all the bindings were specified by a single statement.

A procedure binding declared within a derived type definition overrides one inherited from the 54:11-16
parent type if:

(1) The binding declared in the type has the same binding name as one inherited from the

6 May 2000 Page 4 of 6 J3/00-186

parent type, and

(2) the specific or deferred procedure to be bound to the type by a particular binding name
is not distinguishable, by using the rules of section 14.1.2.3, from one inherited from the
parent and bound to the same binding name.

Otherwise, it extends the set of procedures accessible by applying the generic procedure reso-
lution mechanism (14.1.2.4.21

2) to the binding name. If a binding overrides one inherited from
the parent, it and the inherited one shall match in the following ways:

5 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text. – second option
There are additional edits in section 6 that apply to both options.

R440 proc-binding is PROCEDURE(proc-interface-name) 44:17-20
[[, binding-attr-list] ::] binding-name
=> NULL()

or PROCEDURE [[, binding-attr-list] ::]
binding-name => binding

or GENERIC(proc-interface-name)
[[, binding-attr-list] ::] binding-name
=> NULL()

or GENERIC [[, binding-attr-list] ::]
binding-name => binding-list

Constraint: The binding name shall not be the same as a binding name in the parent type that
is declared to be NON OVERRIDABLE.

Constraint: If a binding name is inherited (4.5.3.2) from the parent type, then the binding name
inherited from the parent type and the one being declared shall both be declared
with GENERIC or both be declared with PROCEDURE.

Constraint: If an access-spec is specified for a binding-name, the same access-spec shall be spec- 44:31+
ified for every GENERIC statement that specifies the same binding-name within
the type definition.

The same binding name may be used in several GENERIC procedure binding statements 49:30+
within a single type definition. The effect is as if all of the NULL() bindings were specified
by NULL(procedure-pointer-name) with procedure-pointer-name specifying a procedure pointer
with the same interface as the proc-interface-name, and then all the bindings were specified by
a single statement.

A procedure binding declared within a derived type definition overrides one inherited from the 54:11-16
parent type if:

(1) The binding declared in the type has the same binding name as one inherited from the
parent type, and

6 May 2000 Page 5 of 6 J3/00-186

(2) it is declared using GENERIC and the specific or deferred procedure to be bound to the
type by a particular binding name is not distinguishable, by using the rules of section
14.1.2.3, from one inherited from the parent and bound to the same binding name.

Otherwise, it extends the set of procedures accessible by applying the generic procedure reso-
lution mechanism (14.1.2.4.21

2) to the binding name. If a binding overrides one inherited from
the parent, it and the inherited one shall match in the following ways:

6 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.– both options
The following edits are needed to implement generic type bound procedures, no matter what
syntax is chosen.

proc-binding 44:12-13
[proc-binding] ...

[Editor: Delete.] 44:15-16

Constraint: If the binding name is the same as one inherited from the parent type, PASS OBJ 44:31+
shall be specified if and only if it is specified for the binding of the same name in
the parent type.

Constraint: If PASS OBJ is specified for a binding name in one procedure binding within the
derived type declaration, it shall be specified in all procedure bindings for that
binding name within the derived type declaration.

Constraint: If NON OVERRIDABLE is specified for a binding name in one procedure binding
within the derived type declaration, it shall be specified in all procedure bindings
for that binding name within the derived type declaration.

or NULL(procedure-name) 44:45
or NULL(procedure-pointer-name)

[Editor: Replace “procedure that has” by “procedure. The procedure-pointer-name shall be 44:47
the name of an accessible procedure pointer. The procedure or procedure pointer shall have”.
After the second “procedure” insert “or procedure pointer”.]

[Editor: Delete.] 45:4-13

[Editor: Replace “deferred” with “a deferred procedure binding”.] 49:26

may override (4.5.3.2) the inherited deferred binding with another deferred binding. 49:29

[Editor: Delete “in that interface block”.] 345:7

[Editor: Delete “in that interface block”.] 345:12-13

[Editor: Add a new section. The term effective set of procedures is defined here, but not used 346:22+
anywhere other than in this section. I’ve set it in italic instead of bold face, with the intention
that it’s not worth putting in the index and glossary. If you want to set it in bold face and put

6 May 2000 Page 6 of 6 J3/00-186

it in the index, that’s fine, too. If you set it in bold face, do I owe you a glossary entry?]
14.1.2.4.21

2 Resolving type bound procedure references

The effective set of procedures for a type and binding name is the set of procedures inherited
for that binding name from the parent of the type, minus the overridden ones, plus the ones
declared in the type. Each procedure in an effective set has a corresponding one in each effective
set for each extension type – either the same procedure or one that overrides it. For purposes
of generic resolution, the passed-object dummy argument (4.5.1) of a procedure inherited from
the parent type is considered to have the extended type into which it is inherited. Each effective
set of procedures is a generic interface.
If a type-bound procedure is specified by data-ref % binding-name in a function reference or
call statement:

(1) One procedure is selected from the effective set of procedures for the binding-name and
the declared type of the data-ref, according to the generic resolution rules (14.1.2.4.1).

(2) The reference is to the procedure from the effective set, for the binding-name and the
dynamic type of data-ref, that corresponds to the procedure selected in step (1).

If the reference is to a deferred binding, an error condition occurs.

deferred procedure binding (4.5.1.5): a type-bound procedure binding that specifies the 400:17+
NULL() intrinsic. A deferred procedure binding shall not be invoked.

7 Straw vote about access-spec semantics

It is possible, by removing the constraint introduced at [44:31+] in sections 4 and 5 above, to
allow some bindings to be private, and some to be public, for the same binding name. This
is different from the usual rules for generic interfaces accessed from a module. Instead of the
constraint would be a note:

Note 4.191
2 44:43+

It is possible for some of the bindings to a binding name to be PRIVATE and some to be
PUBLIC; it is not required that all be PRIVATE or that all be PUBLIC. Within the module
containing the derived type definition, all procedures bound to a type by a particular binding
name are candidates for access by applying the generic resolution rules to the binding name.
Without the module containing the derived type definition, only the PUBLIC procedures
bound to a type by a particular binding name are candidates for access by applying the
generic resolution rules to the binding name.

(a) Should the access-spec apply to the binding (mixed public and private), or (b) Should the
access-spec apply to the binding name (all public or all private)?

Straw
Vote

	Introduction
	Specifications
	Syntax
	Syntax -- first option
	Syntax -- second option
	Straw vote

	Edits
	Edits
	Edits
	Straw vote about access-spec semantics

