31 May 2000 Page 1 of B J3/00-194r1

Subject: FINAL procedures as type-bound procedures
From: Van Snyder
References: 99-108, 00-138 00-170

1 Introduction

This paper is based on D0-138, which was available but not discussed at meeting 152. The
syntax is slightly different from what was adopted for final procedures in 99-108, and slightly
different from what was proposed in 00-138. There is more work to be done for final procedures,
especially specifying the order in which objects cease to exist, and therefore the order in which
their final procedures are executed.

2 Edits for finalization

Edits refer to 00-007. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and | in the text.

or PROCEDURE :: FINAL() => procedure-name-list

Constraint: The procedure-name shall be the name of an accessible module subroutine. It shall
have one dummy argument with a declared type of type-name that is polymorphic
if and only if type-name is extensible. This argument shall not have the ALLOCAT-
ABLE, ASYNCHRONOUS, OPTIONAL, INTENT(OUT), POINTER, VALUE or
VOLATILE attribute. If the dummy argument is an array it shall have assumed
shape. All nonkind parameters of the dummy argument shall be assumed.

Constraint: If several subroutines are bound to the type with binding-attr FINAL, they shall be

distinguished according to the rules for unambiguous procedure references (14.1.2.3).

Constraint: If any final subroutines are specified for a type and the dummy arguments have
a particular set of kind type parameters, at least one of them shall have a scalar
dummy argument.

4.5.1.5.1 Final subroutine

A procedure binding that specifies FINAL() is a final subroutine for objects of the type. The
set of final subroutines that are bound to the type is a generic interface.

A final subroutine may be elemental.

When any object is deallocated (6.3.3, 6.3.3.1) or becomes undefined by the events specified by
items (3) or (13)(c) in 14.7.6, if a final subroutine is selected as specified in 14.1.2.4.22, it is
invoked with the object as its actual argument. If the subroutine causes other objects of the
same type and kind type parameters to be deallocated or to become undefined by the events
specified by items (3) or (13)(c) in 14.7.6, it shall be recursive.

J3 internal note

44:184

44:25+

49:30+

year/00/00-138.pdf.gz
year/00/00-170.pdf.gz
year/00/00-138.pdf.gz
year/00/00-138.pdf.gz

31 May 2000 Page 2 of B J3/00-194r1

Unresolved issue xxx
A specification when certain objects — e.g. variables with the SAVE attribute, module vari-

ables, ... — cease to exist is needed.

Immediately following execution of a final subroutine, the direct subobjects of the type, includ-
ing the parent subobject are finalized.

J3 internal note

Unresolved issue xxx
The above depends upon the meaning of terminology, e.g. finalized, that is yet to be developed.

The set of final subroutines declared in the type is a generic interface.
A final subroutine for an object is selected according to the generic resolution rules (14.1.2.4.1).

If the reference is to a deferred binding, an error condition occurs.

346:22+

