ISO/IEC JTC1/SC22/WG5J3/00-197

ISO IEC TECHNICAL REPORT

ISO/IEC JTC1 PDTR XX.XX.XX
Enhanced Module Facilities
in
Fortran

An extension to IS 1539-1:1997

13 March 2000
THIS PAGE TO BE REPLACED BY ISO-CS

ISO/IEC PDTR xx.xx.xx.xx J3/00-197

Contents
0 Introduction ii
0.1 Shortcomings of Fortran’s module system ii
0.1.1 Avoiding recompilation cascades oL ii
0.1.2 Packaging proprietary software Lo iii
0.1.3 Decomposing large and interconnected facilities iii
0.1.4 Easier library creation L iv
0.2 Disadvantage of using this facility o iv
1 General 1
1.1 Scope . . oo e 1
1.2 Normative References L 1
2 Requirements 2
2.1 Modules e 2
2.1.1 Example of a submodule specification part 2
2.2 Submodules 3
2.2.1 Completing a procedure declared in a parent module or submodule 3
2.3 Relation between modules and submodules 0oL, 4
3 Required editorial changes to ISO/IEC 1539-1 : 1997 5

ISO/IEC PDTR xx.xx.xx.xx J3/00-197 © ISO/IEC

Foreword

[General part to be provided by ISO CS]

This technical report specifies an extension to the module program unit facilities of the programming language
Fortran. Fortran is specified by the international standard ISO/TEC 1539-1. This document has been
prepared by ISO/IEC JTC1/SC22/WGS5, the technical working group for the Fortran language.

It is the intention of ISO/IEC JTC1/SC22/WGSH5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran standard (ISO/IEC 1539-1) without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or changes
are needed to achieve proper integration, in which case every reasonable effort will be made to minimize the
impact of such changes on existing commercial implementations.

0 Introduction

The module system of Fortran, as standardized by ISO/IEC 1539-1, while adequate for programs of modest
size, has shortcomings that become evident when used for large programs, or programs having large modules.
The primary cause of these shortcomings is that modules are monolithic.

This technical report to extends the module facility of Fortran so that program developers can encapsulate
the implementation details of module procedures in zero or more submodules, that are separate from but
dependent on the module in which the interfaces of their procedures are defined. If a module or submodule
has submodules, it is the parent of those submodules.

The facility specified by this technical report is compatible to the module facility of Fortran as standardized
by ISO/IEC 1539-1.

0.1 Shortcomings of Fortran’s module system

The shortcomings of the module system of Fortran, as specified by ISO/TEC 1539-1, and solutions offered
by this technical report, are as follows.

0.1.1 Avoiding recompilation cascades

Once the design of a program is stable, most changes in modules occur in the implementation of those
modules — in the procedures that implement the behavior of the modules and the private data they retain
and share — not in the interfaces of the procedures of the modules, nor in the specification of publicly accessible
types or data entities. Changes in the implementation of a module have no effect on the translation of other
program units that access the changed module. The existing module facility, however, draws no structural

ii

ISO/IEC PDTR xx.xx.xx.xx J3/00-197

distinction between interface and implementation. Therefore, if one changes any part of a module, the
language translation system has no alternative but to conclude that a change may have occurred that could
affect other modules that access the changed module. This effect cascades into modules that access modules
that access the changed module, and so on. This can cause a substantial expense to re-translate and re-certify
a large program.

Using facilities specified in this technical report, implementation details of a module can be encapsulated in
submodules, so that they can be changed without implying that other modules must be translated differently.

If a module is used only in the implementation of a second module, a third module accesses the second, and
one changes the interface of the first module, utilities that examine the dates of files have no alternative but
to conclude that a change may have occurred that could affect the translation of the third module.

Modules can be decomposed using facilities specified in this technical report so that a change in the interface
of a module that is used only in a submodule has no effect on the the parent of that submodule, and therefore
no effect on the translation of other modules that use the second module. Thus, compilation cascades caused
by changes of interface can be shortened.

0.1.2 Packaging proprietary software

If a module as specified by the international standard ISO/IEC 1539-1 is used to package proprietary software,
the source text of the module cannot be published as authoritative documentation of the interface of the
module, without either exposing trade secrets, or requiring the expense of separating the implementation
from the interface every time a revision is published.

Using facilities specified in this technical report, one can publish the source text of the module as authoritative
documentation of its interface, while witholding publication of the source text of the submodules that contain
the implementation details, and the trade secrets embodied within them.

0.1.3 Decomposing large and interconnected facilities

If an intellectual concept is large and internally interconnected, it requires a large module to implement
it. Decomposing such a concept into components of tractable size using modules as specified by ISO/IEC
1539-1 may require one to convert private data to public data.

A concept can be decomposed into modules and submodules of tractable size using facilities specified in this
technical report, without exposing private entities to uncontrolled use.

Decomposing a complicated intellectual concept may furthermore require circularly dependent modules. The
latter is prohibited by ISO/IEC 1539-1. It is frequently the case, however, that the dependence is between
the implementation of some parts of the concept and the interface of other parts. Because the module
facility defined by international standard ISO/TEC 1539-1 does not distinguish between the implementation
and interface, this distinction cannot be exploited to break the circular dependence. Therefore, modules that
implement large intellectual concepts tend to become large, and therefore expensive to maintain reliably.

iii

ISO/IEC PDTR xx.xx.xx.xx J3/00-197 © ISO/IEC

Using facilities specified in this technical report, complicated concepts can be implemented in submodules
that access modules, rather than modules that access modules, thus reducing the possibility for circular
dependence between modules.

0.1.4 Easier library creation

Most Fortran translator systems produce a single file of computer instructions, called an object file, for each
module. This is easier than producing a separate object file for the specification part and for each module
procedure. It is also convenient, and conserves space and time, when a program uses all or most of the
procedures in each module. It is inconvenient, and results in a larger program, when only a few of the
procedures in a general purpose module are needed in a particular program.

If modules are decomposed using facilities specified in this technical report, it would be easier for each
program unit’s author to control how module procedures are allocated among object files.

0.2 Disadvantage of using this facility

Translator systems will find it more difficult to carry out inter-procedural optimizations if the program uses
the facility specified in this technical report. When translator systems become able to do inter-procedural
optimization in the presence of this facility, it is likely that requesting inter-procedural optimization will
cause compilation cascades in the first situation mentioned in section 0.1.1, even if this facility is used.
Although one advantage of this facility would be nullified in the case when users request inter-procedural
optimization, it would remain if users do not request inter-procedural optimization, and the other advantages
remain in any case.

iv

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

Information technology — Programming Languages — Fortran
Technical Report: Enhanced Module Facilities

1 General

1.1 Scope

This technical report specifies an extension to the module facilities of the programming language Fortran.
The current Fortran language is specified by the international standard ISO/IEC 1539-1 : Fortran. The
extension allows program authors to develop the implementation details of concepts in new program units,
called submodules, that cannot be accessed directly by use association. In order to support submodules,
the module facility of international standard ISO/TEC 1539-1 is changed by this technical report in such
a way as to be upwardly compatible with the module facility specified by international standard ISO/TEC
1539-1.

Section 2 of this technical report contains a general and informal but precise description of the extended
functionalities. Section 3 contains detailed editorial changes which if applied to the current international
standard would implement the revised language specification.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this
technical report. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this technical report are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of IEC and ISO
maintain registers of currently valid International Standards.

ISO/IEC 1539-1 : 1997 Information technology - Programming Languages - Fortran

1of 13

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197
2 Requirements

The following subsections contain a general description of the extensions to the syntax and semantics of the
current Fortran programming language to provide facilities for submodules.

2.1 Modules

As specified in ISO/IEC 1539-1, a module consists of a specification part and a module subprogram part.

This technical report defines a submodule specification part, in which only the interfaces of procedures
in submodules are declared. This part is introduced by a statement of the form SUBMODULE :: submodule-
name. A submodule specification part extends from the SUBMODULE statement that introduces it to
(but not including) the next CONTAINS, SUBMODULE or END MODULE statement. A submodule
procedure is a module procedure for which the interface is specified in a submodule specification part, and
the body is defined in a submodule.

A module or submodule may have any number of module subprogram parts, and any number of submodule
specification parts, in any order. If several submodule specification parts have the same name, the effect is
as if the specifications they contain were concatenated within a single submodule specification part. This
allows one to put all module procedures into alphabetical order.

Within a submodule specification part, procedure interface declarations specify procedures in the specified
subsidiary submodule that can be accessed. This interface is syntactically identical to an interface body,
but semantically different in that entities of the host environment of the interface are accessible within the
interface by host association. Because of this difference, a procedure interface declaration within a submodule
specification part is called a procedure interface declaration instead of an interface body.

2.1.1 Example of a submodule specification part

SUBMODULE :: POINTS_A
REAL FUNCTION POINT_DIST (A, B)
! Compute the distance between the points A and B
TYPE(POINT) :: A, B
END FUNCTION POINT_DIST

The submodule specification part in the above example specifies that there is a submodule, named POINTS_A,
and that there is a function named POINT_DIST, with the specified interface, that can be accessed from that
submodule. If the program unit containing the submodule specification part is a module, and POINT DIST
is public, then POINT_DIST can be accessed by use association of that module.

2 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

2.2 Submodules

A submodule is a program unit that is dependent on and subsidiary to a module or another submodule.
If a module or submodule has subsidiary submodules, it is the parent of those subsidiary submodules.

A submodule is introduced by a statement of the form SUBMODULE (parent-name) submodule-name, and
terminated by a statement of the form END SUBMODULE submodule-name.

A submodule may have a specification part, zero or more submodule specification parts, and zero or more
module procedure parts.

Everything is a submodule is effectively PRIVATE except for those submodule procedures that were declared
to be PUBLIC in the parent module. It is not possible to access entities declared in the specification part
of a submodule because a USE statement must specify a module, not a submodule. Thus, PRIVATE and
PUBLIC declarations are not permitted in a submodule.

2.2.1 Completing a procedure declared in a parent module or submodule

If a procedure interface declaration appears in the parent program unit, the procedure shall be defined in
the specified submodule, either within a module procedure part or a submodule specification part.

Within a module procedure part of the subsidiary submodule, the procedure body shall be introduced by
a statement of the form SUBMODULE FUNCTION function-name or SUBMODULE SUBROUTINE subroutine-name,
depending on the declaration in the parent program unit. The interface of the procedure shall not be repeated
in the submodule.The procedure body is logically an extension of its interface declaration; it does not access
its interface declaration by host assciation.

Within a submodule specification part of the subsidiary submodule, the same statement may be used to
indicate that definition of the body of the procedure is deferred to a yet more subsidiary submodule. In
this case, neither an interface nor body shall follow the statement. The procedure shall be defined in the
submodule specified in the submodule specification part of the subsidiary submodule, either within a module
procedure part or a submodule specification part. This facility may be used to place the body of a public
procedure in a submodule two or more steps subsidiary to the module, so that it may share implementation-
dependent data or procedures in an intermediate subsidiary submodule with procedures in different subsidiary
submodules. If the procedures in the intermediately subsidiary submodule are not specified in the module,
they cannot be accessed by use association, and therefore either their interfaces or bodies can be changed
without affecting the translation of a program unit that accesses the module by use association.

Example of a submodule

SUBMODULE (POINTS) POINTS_A
CONTAINS
SUBMODULE FUNCTION POINT_DIST RESULT(HOW_FAR)

3 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

! Don’t re-declare dummy arguments, or result type
HOW_FAR = SQRT((A%X-B%X)**2 + (A%LY-BJY)**2)
END FUNCTION POINT_DIST
END SUBMODULE POINTS_A

Example of submodules with a deferred procedure body

SUBMODULE (POINTS) POINTS_A
! Type and data declarations shared by submodules of POINTS_A (but not
! accessible anywhere else:

SUBMODULE :: SUB_POINTS_A
SUBMODULE FUNCTION POINT_DIST
! No body, because it’s in a SUBMODULE specification part

! Other submodule or contains parts
END SUBMODULE POINTS_A

SUBMODULE (POINTS_A) SUB_POINTS_A
CONTAINS
SUBMODULE FUNCTION POINT_DIST RESULT(HOW_FAR)
! Don’t re-declare dummy arguments, or result type
! Entities in POINTS_A and POINTS can be accessed
HOW_FAR = SQRT((A%X-B%X)**2 + (A%Y-BLY)*x2)

END FUNCTION POINT_DIST

END SUBMODULE SUB_POINTS_A

2.3 Relation between modules and submodules

Public entities of a module, including procedure interface declarations in submodule specification parts,
can be accessed by use association. Submodules contain no public entities. Public procedure interface
declarations in submodule specification parts of modules imply that the procedure bodies in the specified
submodules are indirectly accessible, by use association of the module.

All entities of a parent module or submodule, including private entities, declarations of interfaces to proce-
dures implemented in different submodules, and entities accessed from a parent module or submodule by
host association, are accessible within each subsidiary submodule by host association.

A procedure body in a submodule is logically a continuation of its interface in its parent program unit; it
does not access its interface by host association.

4 0f 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

3 Required editorial changes to ISO/IEC 1539-1 : 1997

The following suggested editorial changes illustrate that the extension in this technical report is not a large
change to Fortran. While every effort has been made to cover all the bases, they will undoubtedly be a few
additional changes necessary. Depending on the schedule of implementation of this technical report, it may
also be necessary to convert the changes to refer to the 200x standard instead of the 1997 standard.

[Page and line numbers in brackets refer to ANSI/NCITS/J3 document 97-007r2.]
[10:304] Add a new syntax rule in section 2.1 High level syntax, after rule R213:

submodule-specification-part is submodule-specification-stmt
submodule-procedure-declaration
[submodule-procedure-declaration | ...

[11:35] In the second line of 2.2 Program unit concepts, add ¢, a submodule” after “a module”.

[11:45] In item (2) of the list in section 2.2 Program unit concepts, replace “body” by “declaration
(12.3.2)”.

[186:17-34] Replace the normative text of section 11.3 Modules (but not subsidiary sections or the notes)
with the following:

A module contains specifications and definitions that may be accessible to other program units.
module is module-stmt

[specification-part |

[procedure-part | ...

end-module-stmt

module-stmt is MODULE module-name

procedure-part is module-subprogram-part
or submodule-specification-part

submodule-specification-stmt is SUBMODULE :: submodule-name

submodule-procedure-declaration is procedure-interface-declaration
or submodule-procedure-stmt

submodule-procedure-stmt is SUBMODULE FUNCTION function-name
or SUBMODULE SUBROUTINE subroutine-name

end-module-stmt is END MODULE [module-name]

Constraint: If module-name is specified in the end-module-stmt, it shall be identical to the module-name in
the module-stmit.

5 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

Constraint: A specification-part in a module or submodule shall not contain a stmt-function-stmt, an entry-
stmt or a format-stmit.

Constraint: If an object of a type for which component-initialization (R429) is specified appears in the
specification-part of a module or submodule and does not have the ALLOCATABLE or POINTER
attribute, the object shall have the SAVE attribute.

Constraint: A module-name shall not be the same as any other name in the program unit.

Constraint: A submodule-name shall not be the same as any other name in the program unit, except that
two submodule-specification-parts may have the same name.

Constraint: The function-name or subroutine-name in a submodule-procedure-stmt shall be declared to be
a function or subroutine, respectively, in a submodule-procedure-declaration in a submodule-
specification-part of the parent module or submodule that names the submodule in which the
submodule-procedure-stmt appears.

Constraint: A submodule-procedure-stmt shall not appear except within a submodule.

A module name is a global name, and shall not be the same as the name of any other program unit, external
procedure, or common block in the program.

If a module has submodules ([new section] 11.3.1), it is the parent module of those submodules.

A submodule-name specified in a submodule-specification-stmt shall be the same as the name of exactly one
submodule ([new section] 11.3.1) in the program.

Every procedure that is named in a submodule-specification-part and is not a dummy procedure is a submod-
ule procedure ([new section] 12.5.2.1), and shall be declared in a submodule-procedure-stmt, a submodule-
function-stmt, or a submodule-subroutine-stmt in the submodule specified by the submodule-name in the
submodule-specification-stmit.

If the same submodule-name appears on more than one submodule-specification-stmt, the effect is as though
the submodule-specification-parts introduced by those statements were concatenated.

[187:2+] Insert the following before the existing section 11.3.1 Module reference, and renumber subsequent
sections:

11.3.1 Submodules

A submodule is a program unit that is dependent on and subsidiary to its parent module or submodule.
Its parent module or submodule is its host environment.

submodule is submodule-stmt

[specification-part |

[procedure-part | ...

end-submodule-stmt
submodule-stmt is SUBMODULE (parent-name) submodule-name
end-submodule-stmt is END SUBMODULE [submodule-name |

Constraint: The submodule-name in the submodule-stmt shall appear in a submodule-specification-stmt in

6 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

the module or submodule named by the parent-name.

Constraint: If submodule-name is specified in the end-submodule-stmt, it shall be identical to the submodule-
name in the submodule-stmt.

Constraint: The submodule-name specified in the submodule-stmt shall not be the same as any other name
in the program unit.

A submodule-name is a global name, and shall not be the same as the name of any other program unit,
external procedure, or common block in the program.

If a submodule has submodules, it is the parent submodule of those submodules.

Note

Related submodules and their parent module or submodule stand in a tree-like hierarchical relationship
one to another, with the module at the root. For each submodule, its parent module or submodule is its
parent with respect to the tree, and its submodules are children with respect to the tree.

[193:25] In the first sentence of section 12.3.2 Specification of the procedure interface, add “, submod-
ule” after “module”.

[193:27-28] In the last sentence of the first paragraph of section 12.3.2 Specification of the procedure
interface, change the first occurrence of “in an interface block” to “as a procedure interface declaration,”
and change the second “interface block” to “procedure interface declaration.”

[193:29-33] Remove note 12.3 — it is modified and moved to section 12.3.2.1. Replace it by:

procedure-interface-declaration is function-stmt
[specification-part]
end-function-stmt
or subroutine-stmt
[specification-part |
end-subroutine-stmt

Constraint: A procedure-interface-declaration for a pure procedure shall specify the intents of all dummy
arguments except pointer, alternate return, or procedure arguments.

Constraint: A procedure-interface-declaration shall not contain an entry-stmt, data-stmt, format-stmt, or
stmt-function-stmt.

A procedure interface declaration specifies all of the procedure’s characteristics.
[193:42-6] Replace the definition of interface-body (R1205) and the following constraint by:
interface-body is procedure-interface-declaration

Note 12.3

7 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

An interface body cannot be used to describe the interface of an internal procedure, a module procedure,
of an intrinsic procedure because the interfaces of such procedures are already explicit. The name of a
module procedure may, however, appear in a MODULE PROCEDURE statement in an interface block.

[194:11-12] Remove the first constraint after syntax rule R1207 (it has been moved to section 12.3.2, with
revised wording).

[194:32] In the first sentence of the paragraph of text immediately before note 12.4, replace “An interface
body specifies all of the procedure’s characteristics and these” by “The procedure characteristics specified
by an interface body”.

[206:21+] Add a new section 12.5.2.1 subsidiary to section 12.5.2 and renumber subsequent subsections:
12.5.2.1 Submodule procedures

A submodule procedure is a module procedure for which the interface is declared in a parent module
(11.3) or submodule (11.3.1), and the body is defined in a submodule of that parent program unit. A
submodule procedure body is logically a continuation of its procedure interface declaration in the parent
module or submodule; it does not access the interface by host association.

A submodule procedure is accessible in its parent module or submodule. If the parent program unit is a
module, and the procedure declared in the submodule-specification-part is public, it can be accessed by use
association.

Note
It is possible to place specifications in a submodule declaration that do not contribute to specification of
the interface. Unlike in an interface body, these specifications are part of the procedure.

[206:34] In section 12.5.2.2 Function subprogram change the first line of the syntax rule (R1216) for
function-subprogram to:

function-subprogram is function-header

[206:38+] In section 12.5.2.2 Function subprogram add the following before the syntax rule (R1217) for
function-stmt:

function-header is function-stmt
or submodule-function-stmt

[206:42+] In section 12.5.2.2 Function subprogram add the following after the syntax rule (R1217) and
constraint for function-stmt:

submodule-function-stmt is SUBMODULE FUNCTION function-name &
B [RESULT (result-name)]

Constraint: A submodule-function-stmt shall not appear except within a submodule.
Constraint: The function-name shall be declared, in a submodule-procedure-declaration in a submodule-

8 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

specification-part of the parent module or submodule of the submodule in which the submodule-
function-stmt appears, to be a function that is not a dummy procedure. The submodule-
specification-stmt that introduces that submodule-specification-part shall name the submodule
in which the submodule-function-stmt appears.

Constraint: The result-name shall not be specified in both the procedure-interface-declaration and the
submodule-function-stmit.

[207:14+] In section 12.5.2.2 Function subprogram, in the last constraint after the syntax rule (R1220)
for end-function-stmt, change function-stmt to function-header.

[208:25] In section 12.5.2.3 Subroutine subprogram change the first line of the syntax rule (R1221) for
subroutine-subprogram to:

subroutine-subprogram is subroutine-header

[208:29+] In section 12.5.2.3 Subroutine subprogram add the following before the syntax rule (R1222)
for subroutine-stmt:

subroutine-header is subroutine-stmt
or submodule-subroutine-stmt

[208:32+] In section 12.5.2.3 Subroutine subprogram add the following after the syntax rule (R1222)
and constraint for subroutine-stmt:

submodule-subroutine-stmt is SUBMODULE SUBROUTINE subroutine-name

Constraint: A submodule-subroutine-stmt shall not appear except within a submodule.

Constraint: The subroutine-name shall be declared, in a submodule-procedure-declaration in a submodule-
specification-part of the parent module or submodule of the submodule in which the submodule-
subroutine-stmt appears, to be a subroutine that is not a dummy procedure. The submodule-
specification-stmt that introduces that submodule-specification-part shall name the submodule
in which the submodule-subroutine-stmt appears.

[208:41+] In section 12.5.2.3 Subroutine subprogram, in the last constraint after the syntax rule (R1224)
for end-subroutine-stmt, change subroutine-stmt to subroutine-header.

[282:24] In 14.6.1.3 Host association add “a procedure interface declaration that is not an interface body,
a subsidiary submodule of a module” after “module subprogram” in the first sentence.

[283:8] In the last line of the first paragraph after the list of entities that can become inaccessible as a result
of host association, replace “subprogram” by “scoping unit”.

[298:30+] Add parent module or submodule to the glossary:
parent module or submodule (11.3): A module or submodule that has submodules.

[299:20] In the glossary entry for program unit, add “a submodule” after “module”.

9 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

[300:24+] Add submodule and submodule procedure to the glossary:

submodule (11.3.1): A program unit that is logically an extension of a module or submodule, but cannot
be accessed directly by use association.

submodule procedure (12.5.2.1): A module procedure for which the interface is declared in a parent module
or submodule, and the body is defined in a submodule of that parent program unit.

[334:174+] Add a new section subsidiary to section C.8.3 Examples of the use of modules:
C.8.3.9 Modules with submodules

This example illustrates a module, color_points, with a submodule, color_points_a, that in turn has a
submodule, color_points_b. Public entities declared within color_points can be accessed by use associa-
tion. The module color_points does not have a contains-part, but a contains-part is not prohibited. The
module color_points could be published as definitive specification of the interface, without revealing trade
secrets contained within color_points_a or color_points._b.

module color_points
type color_point
private
real :: x, y
integer :: color
end type color_point
submodule :: color_points_a ! Interfaces for procedures with separate
| bodies in the submodule color_points_a
subroutine color_point_del (p) ! Destroy a color_point object
type(color_point) :: p
end subroutine color_point_del
real function color_point_dist (a, b) ! Distance between two color_point objects
type(color_point) :: a, b
end function color_point_dist
subroutine color_point_draw (p) ! Draw a color_point object
type(color_point) :: p
end subroutine color_point_draw
subroutine color_point_new (p) ! Create a color_point object
type(color_point) :: p
end subroutine color_point_new
end module color_points

The only entities within color_points_a that can be accessed by use association are procedures declared
in submodule specification parts of color_points (in this case, there is only one submodule specification
part). If the procedures’ bodies are changed but their interfaces are not, the interface from program units
that access them by use association is unchanged. If the module and submodule are in separate files, utilities
that examine the date of modification of a file would notice that changes in the module could affect the

10 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

translations of program units that access the module by use association, but that changes in submodules
could not.

The variable instance_count is not accessible by use association of color_points, but is accessible within
color_points_a, and its submodules.

submodule (color_points) color_points_a ! Submodule of color_points
integer, save :: instance_count = 0
! Procedure names are in alphabetical order
contains ! Invisible bodies for public interfaces declared in the module
submodule subroutine color_point_del ! (p)
instance_count = instance_count - 1
deallocate (p)
end subroutine color_point_del
submodule function color_point_dist result(dist) ! (a, b)
dist = sqrt((bhx - akx)**2 + (bly - aky)**2)
end function color_point_dist
submodule :: color_points_b
submodule subroutine color_point_draw ! (p)
! "submodule" prefix indicates the interface is defined in the parent, not here.
! Being in a submodule specification part means the body is not here, either.
contains
submodule subroutine color_point_new ! (p)
instance_count = instance_count + 1

allocate(p)
end subroutine color_point_new
submodule :: color_points_b ! continuation of above.

]
! Interface for a procedure with a separate
! body in submodule color_points_b
subroutine inquire_palette (pt, pal)
use palette_stuff ! palette_stuff, especially submodules
! thereof, can access color_points by use
| association without causing a circular
| dependence because this use is not in the
! module. Furthermore, changes in the module
! palette_stuff are not accessible by use
! association of color_points
type(color_point), intent(in) :: pt
type(palette), intent(out) :: pal
end subroutine inquire_palette
end submodule color_points_a

The subroutine inquire_palette is accessible within color_points_a because its interface is declared within
a submodule specification part therein. It is not, however, accessible by use association, because its interface
is not declared in a submodule specification part of the module, color_points. Since the interface is not

11 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

declared in the module, changes in the interface cannot affect the translation of program units that access
the module by use association.

submodule (color_points_a) color_points_b ! Subsidiary*#*2 submodule
contains ! Invisible body for interface declared in the parent submodule

submodule subroutine color_point_draw ! (p)

! "submodule" prefix indicates the interface is defined in the parent, not here.

! Being in a contains part means the body is here.

type(palette) :: MyPalette
.; call inquire_palette (p, MyPalette);

end subroutine color_point_draw

submodule subroutine inquire_palette

! "use palette_stuff" not needed because it’s in the parent submodule

implementation of inquire_palette
end subroutine inquire_palette
subroutine private_stuff ! not accessible from color_points_a

end subroutine private_stuff
end submodule color_points_b

module palette_stuff
type :: palette ; ... ; end type palette
contains
subroutine test_palette (p)
! Draw a color wheel using procedures from the color_points module
type(palette), intent(in) :: p
use color_points ! This does not cause a circular dependency because
! the "use palette_stuff" that is logically within
! color_points is in the color_points_a submodule.

end subroutine test_palette
end module palette_stuff

There is a use palette_stuff in color_points_a, and a use color_points in palette_stuff. The use
palette_stuff would cause a circular reference if it appeared in color_points. In this case it does not
cause a circular dependence because it is in a submodule. Submodules are not accessible by use association,
and therefore what would be a circular appearance of use palette_stuff is not accessed.

program main
use color_points
! "instance_count" and "inquire_palette" are not accessible here
! because they are not declared in the "color_points" module.
! "color_points_a" and "color_points_b" cannot be accessed by

12 of 13

TECHNICAL REPORT (© ISO/IEC ISO/IEC PDTR xx.xx.xx.xx J3/00-197

! use association.

interface (draw) ! just to demonstrate it’s possible
module procedure color_point_draw

end interface

type(color_point) :: C_1, C_2

real :: RC
ééil color_point_new (c_1) ! body in color_points_a, interface in color_points
ééil draw (c_1) ! body in color_points_b, specific interface

! in color_points, generic interface here.
éé-= color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points
ééil color_point_del (c_1) ! body in color_points_a, interface in color_points

end program main

13 of 13

