
3 July 2000 Page 1 of 4 J3/00-240

Subject: Miscellaneous items
From: Van Snyder
References: 00-192r1

Here are several things that may or may not need attention. I don't even o�er edits (well,
sometimes I o�er crappy ones). If they need attention, we can develop edits at the meeting, if
we have time, or insert unresolved issue notes.

Page and line numbers refer to 00-007r2.

Should the syntax rule number be R4xx, not R314? 32:34

Shouldn't the constraint currently at [55:1-2] be here? 32:39+

Given the stipulation at [342:4] that a type name is a name in class (1), and the requirement 41:18-19
at [342:13-15] that a name in one class cannot be used to identify another entity in the same
class, the \nor ... type-name" part of the constraint is unnecessary.

Do we want to allow to specify default values for type parameters? 41:32

Needs a new constraint (note that 00-234 adds it): 43:22+

Constraint: If => binding appears, the double-colon separator shall appear.

[Editor: The Frame-ism (724) here probably ought to be (7.5.1.5).] 45:38

Shouldn't the constraint be the following? 63:20-21

Constraint: In a declaration-type-spec , every type-param-value that corresponds to a nonkind
type parameter shall be a speci�cation-expr , and every type-param-value that cor-
responds to a kind type parameter shall be an initialization-expr .

It's not obvious why the BIND attribute necessarily implies the SAVE attribute. It wouldn't 79:32-33
hurt to have an explanation.

Shouldn't this paragraph be a constraint? 82:17-20

Add \of type integer" at the end of the constraint. 84:17

There are numerous problems here. (1) A disassociated pointer cannot be referenced in an 115:28-43
expression and therefore cannot be a primary. The discussion and table therefore do not belong
here. (2) If the pointer is a procedure pointer, it does not have \type, type parameters and
rank", and therefore the heading of the second column of table 7.2 does not apply. (3) The
description of the result characteristics in the case of proc-binding does not include the case
when an abstract interface is explicitly speci�ed in the PROCEDURE statement.

Recursive speci�cation functions, e.g. FACTORIAL, are useful and not, in themselves, harmful. 118:3
There can be no problem except by a mutual recursion of the speci�cation function and the
procedure in which it is contained, which requires them both to be recursive. Even this very
rare thing isn't guaranteed to be a problem: Invoking the speci�cation function might cause the
procedure containing the reference to be invoked with di�erent arguments from the instance
in which the invocation of the speci�cation function occurred, which might result in the spec-
i�cation function being invoked with di�erent arguments, which might result in termination.
Although prohibiting recursive speci�cation functions prevents nonterminating recursive invo-
cations of the procedures in which they appear in speci�cation expressions, careful programming
can do so just as well. There is probably no need for any kind of prohibition. Speci�cation
functions are just another sharp knife in a large armory full of sharp knives, swords and spears.
The prohibition at [118:3] against recursive speci�cation functions should be removed. If some

year/00/00-192r1.pdf.gz

3 July 2000 Page 2 of 4 J3/00-240

kind of paternalistic prohibition is really desired, it is enough to require that the speci�cation
function and the procedure in which it is referenced as a speci�cation function shall not both
be recursive.

I suggest: 132:20+

Constraint: In the case of intrinsic assignment, the types of variable and expr shall conform
according to the rules in table 7.9.

Put table 7.9 here, but with \type parameters" for a derived type replaced by \kind type
parameters."

Constraint: In the case of intrinsic assignment, the variable and expr shall have the same rank
or the expr shall be a scalar.

In concert with the change suggested for [132:20+] above, replace by \If variable is an array, 133:19-21
variable and expr shall conform in shape. If variable is of derived type, corresponding type
parameters of variable and expr shall have the same values."

If this and the change suggested for [132:20+] above are not accepted, at least move table 7.9
to [133:21+].

\same type parameters" needs to be \same dynamic type and type parameters as expr", and 134:42, 44
we need to add \for objects whose declared type is the same as the dynamic type of the com-
ponent of expr" if we want to cover the case of polymorphic components. Or do we want to
prohibit intrinsic assignment for objects that have polymorphic components? If so, we need
to add \and has no ultimate components that are polymorphic and allocatable" after \poly-
morphic" at [132:33]. But we just added ALLOCATE (... SOURCE = ...), for which the
compiler is expected to do assignment. It would seem to be better to mimic ALLOCATE (
variable%component , SOURCE = expr%component) during intrinsic assignment than to pro-
hibit intrinsic assignment if the variable has a polymorphic and allocatable ultimate component.
If we prohibit intrinsic assignment for objects that have polymorphic and allocatable ultimate
components, we also need to prohibit ALLOCATE (... SOURCE = ...) for objects that have
polymorphic and allocatable ultimate components.

There was a discussion in /data subgroup concerning whether the associate name ought to 156:34
have the POINTER or ALLOCATABLE attribute if and only if the selector does. I thought
the outcome was that it ought to, but those attributes are absent here. If the outcome was
that they ought not to, it wouldn't hurt to have a note here explaining why not { it's not
obvious. On the other hand, if it's possible for the associate name to have the POINTER or
ALLOCATABLE attributes, it would be useful: It would make it easier to allocate, deallocate
and pointer-assign components that have complicated antecedents.

The note is repetitive, and in that the part from \A derived-type object" to the end of the note 183:4-12
applies to normative text at the later point [183:36], it is confusing.

The term e�ective item is set in bold-face type, but is in neither the index nor the glossary. 183:42

Everything in 11.1.2 is said elsewhere, frequently as a constraint. Can we delete section 11.1.2? 238:1-4

To what does \the expression" refer? 244:31

Should polymorphicity be a characteristic? 244:33+

Is this a \constant" (well, really \nonconstant") that we're trying to get rid of? 245:36

Not needed { it's covered by 14.1.2.3. 246:46-47

Do we need to add \accessible" after \entity," or was the intent to restrict IMPORT to work 247:3

3 July 2000 Page 3 of 4 J3/00-240

only for entities declared within the scoping unit containing the interface body?

This paragraph also needs to mention dummy procedures and procedure pointers. 247:4-6

The \otherwise" part is not true for abstract interface blocks. 247:15-16

We may want to point out in a comment that because argument B1 has assumed shape and 250:4-5
argument B2 does not, a non-contiguous array section can be the actual argument associated
with B1 without causing additional performance problems, but that if a non-contiguous array
section is the actual argument associated with B2, a copy operation may be necessary.

It would be convenient to be able to use any accessible explicit interface to declare the interface 252:12+
for a procedure pointer. Could we add \ or procedure-name " as an additional right-hand side
for R1211? We would also need to replace \consists ... pointers" by \and speci�es an explicit
speci�c interface, the declared procedures or procedure pointers have the same explicit speci�c
interface" at [253:7].

It is not generally necessary for actual arguments associated with INTENT(OUT) dummy 254:26+
arguments to be de�ned when the procedure reference takes place. In order to have a dynamic
type, however, the data-ref has to be de�ned. Do we need a note to the e�ect that data-ref

shall be de�ned even if the passed-object dummy argument has INTENT(OUT)? Or how about
a constraint that the passed-object dummy argument shall not have INTENT(OUT)?

\If ... polymorphic" could be constraints, because allocatable and pointer dummy arguments 257:24-28
require explicit interface.

\R1201" is the wrong syntax rule number. 259:16

The phrase \an elemental intrinsic actual procedure may be associated with a dummy argument 260:3-5
that is not elemental" leads one to believe that dummy arguments can be elemental. The part
\that is not elemental" should be removed. Three possibilities for what to do next are (1)
nothing, (2) add a parenthetic remark \(which cannot be elemental)", or (3) put in a note
12.27 1

2
to the e�ect that dummy arguments cannot be elemental.

We could get rid of \other than as the argument of the PRESENT intrinsic function" by making 261:6-17
the argument of the PRESENT intrinsic function optional.

I think the reason for this condition is to provide bounds for the elemental-ness. If so, this 261:9-11
condition is too strong (the dummy argument of the elemental procedure can't be optional,
even if another one provides the bounds), and not strong enough (the speci�ed array doesn't
necessarily provide the desired bounds { e.g. if it's unallocated). It should be \... unless an
array of the same rank that is (1) not a dummy argument or is a present dummy argument,
(2) not an unallocated allocatable array, and (3) not a disassociated pointer, is supplied as an
actual argument of that elemental procedure."

\pointer" needs to be \pointer or procedure pointer". 324:1

Subclause 14.1.2.3 has nothing to do with generic procedure references. The title ought to be 343:10
\Unambiguous generic procedure de�nitions."

There is at least one, and maybe three problems here. In the phrase \correspond by name to a 343:34-35
dummy argument not present" does \not present" mean \not declared," or \it has the optional
attribute and there is no associated actual argument?" I think it's the former, but we do have a
section with the phrase \dummy arguments not present" in its title { and it refers to the latter.
The wording should be revised to avoid this confusion. In the former case, it is impossible for a
nonoptional dummy argument to correspond by name to a dummy argument not present. The

3 July 2000 Page 4 of 4 J3/00-240

dummy argument that is not present clearly doesn't have a name. The term \consistent" is
used. This should be de�ned more precisely, in terms of characteristics of actual and dummy
arguments.

The sentence \If a generic..." con
icts with, or at least belongs in [344:25-26]. 343:42-44

Not needed, because of [344:40] and the new language in 5.1.2.10 that speci�es that an interface 344:35
body confers the EXTERNAL attribute. Perhaps [344:40] should be re-worded \(d) if there is
an explicit speci�cation of the EXTERNAL attribute (5.1.2.10) in that scoping unit".

These paragraphs do not explicitly apply to de�ned operations, de�ned assignment, or user- 345:4-14
de�ned derived-type input/output. They apply indirectly to de�ned operations by way of the
phrase \it is generic in exact analogy to generic procedure names" at [250:15], but there is no
parallel statement for de�ned assignment or user-de�ned derived-type input/output.

A generic interface can be constructed by several interface blocks, in di�erent scoping units. 345:7,12-13
The term \interface block" is therefore incorrect. I don't think removing \block" is an adequate
repair.

Either \procedure" should be \interface" at [345:8], or vice-versa at [345:14]. 345:8,14

The introduction to the list (at [358:10-12]) speci�es that it is discussing what happens to 358:19-21
\variables local to its scoping unit or local to the current instance of its scoping unit" when
a RETURN or END statement is executed. Item (e) discusses the e�ect on variables that are
not \local to its scoping unit or local to the current instance of its scoping unit." Either the
introduction to the list should be changed, or paragraph (e) should be put somewhere else. Be
careful, because 14.6.2.1.3(3) refers here.

Consider the following: 389:42+
TYPE(C PTR) :: Y

REAL(C FLOAT), ALLOCATABLE, TARGET :: Z(:)

ALLOCATE (Z(10))

Y = C LOC(Z)

DEALLOCATE (Z)

! Is Y still defined here? Do we need to say something in 14.7.6?

Needs to refer also to 12.3.2.1.2. 400:25

Needs to refer also to 12.3.2.1.1. 400:27

generic interface needs to be in the glossary. 402:10+

It is surely an error that the index location for \type speci�er" is \67-??". 468

