
To: J3 J3/00-266R1
From: Larry Meadows
Subject: Unresolved issue 255
References: J3/97-153, J3/00-139

In the context of /interop discussions at the WG5 meeting in Oulu, unresolved
issue 255 came up.

This paper proposes to resolve issue 255 via a revision of the command line
argument feature. The Revision is based on paper 00-139 that in turn was based
upon 97-153. 97-153 discusses the rationale in detail.

At the time, one of the arguments against 97-153 was that it provided no simple
way to retrieve arbitrarily long command-line arguments; independent changes
have provided a clean resolution: Allocatable character lengths are now allowed
and provide a simple means of addressing this issue.

The approach of the current f2k draft has several shortcomings:

1. It cannot be done anywhere except in the main program, thus forcing
architectural decisions on the user. This is particularly problematic if the
main program is not in Fortran or is otherwise not modifiable by the user who
needs the command-line access. In addition this limitation is inconsistent with
interoperability with C (that is, Fortran/C programs may well have a need to
access the command line in places other than the main program, when coded in the
most natural fashion).
2. It is not user-implementable, but can only be done by the compiler (largely a
consequence of point 1). This means that users cannot do this with existing
compilers.
3. It defines new language syntax and features, which invariably means new
issues to get right. We probably haven't found all of them yet.
4. If extremely long command-line arguments are employed, the facility as
currently defined is likely to be inefficient way to deal with them, as it
forces all the command-line arguments to be returned in a single array. Thus if
there is one argument of length 10,000 characters, and 1000 arguments of length
3 characters, you'll need a 10 megabyte array, about 1000 times larger than the
actual data.
5. The approach of 97-153 is more flexible in that the user can declare the
necessary variables in a way that fits the application. For example, they could
be derived type components or the size could be allocated with extra room to
accommodate requirements such as null termination (as mentioned in paper 00-
121). With the current approach, these kinds of requirements require copying the
data from the "pseudo dummy argument" to its preferred destination.
6. It is not at all similar to predominant existing Fortran practice. It seems
likely that the above shortcomings would cause a substantial fraction of users
to continue to demand a procedure-based approach in addition to the approach of
the standard.

Edits relative to 00-007:

{Delete program args from the bnf}

[235:14] Delete "[(<program-arg-list>)]

[235:15] Delete

[235:24-27] Delete

{Delete section 11.1.1}

[236:11-42, 237:1-45] Delete

{Delete special case for char*(*)}

[68:16-17] Delete

{Delete special case for assumed shape}

[73:20-21] Delete "or...processor"

{ add intrinsics }

[289:15+] Add new intrinsics
COMMAND_ARGUMENT_COUNT()
GET_COMMAND([COMMAND, LENGTH, STATUS]
GET_COMMAND_ARGUMENT(NUMBER, [VALUE,LENGTH,STATUS])

[298:9] Insert new section

13.16.x COMMAND_ARGUMENT_COUNT()
Description. Returns the number of command arguments.
Class. Pure function.
Arguments. None.
Result Characteristics. Scalar default integer.
Result Value. The result value is equal to the number of command arguments
available. If there are no command arguments available or if the processor does
not support command arguments, then the result value is 0. If the processor has
a concept of a command name, the command name does not count as one of the
command arguments.

[306:9] Insert new sections

13.16.x GET_COMMAND([COMMAND, LENGTH, STATUS])
Description. Returns the entire command by which the program was invoked.
Class. Pure subroutine.
Arguments.
COMMAND(optional) shall be scalar and of type default character.
It is an INTENT(OUT) argument. It is assigned the entire command by which the
program was invoked.
If the command cannot be determined, COMMAND is assigned all blanks.
LENGTH(optional) shall be scalar and of type default integer.
It is an INTENT(OUT) argument. It is assigned the significant length of the
command by which the program was invoked. The significant length may include
trailing blanks if the processor allows
commands with significant trailing blanks. This length does not consider any
possible truncation or padding in assigning the command to the COMMAND argument;
in fact the COMMAND argument need not even be present. If the command length
cannot be determined, a length of 0 is assigned.
STATUS(optional) shall be scalar and of type default integer.
It is an INTENT(OUT) argument. It is assigned the value 0 if the argument
retrieval is successful. It is assigned a processor-dependent non-zero value if
the argument retrieval fails.

13.16.x GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])
Description. Returns a command argument.
Class. Pure subroutine.
Arguments.
NUMBER shall be scalar and of type default integer.
It is an INTENT(IN) argument.
It specifies the number of the command argument that the other arguments give
information about. Useful values of NUMBER are those between 0 and the argument
count returned by the COMMAND_ARGUMENT_COUNT intrinsic. Other values are
allowed, but will result in error status return (see below).
Command argument 0 is defined to be the command name by which the program was
invoked if the processor has such a concept. It is allowed to call the
GET_COMMAND_ARGUMENT procedure for command argument number 0, even if the
processor does not define command names or other command arguments.
The remaining command arguments are numbered consecutively from 1 to the
argument count in an order determined by the processor.
VALUE(optional) shall be scalar and of type default character.
It is an INTENT(OUT) argument. It is assigned the value of the command argument
specified by NUMBER. If the command argument value cannot be determined, VALUE
is assigned all blanks.
LENGTH(optional) shall be scalar and of type default integer. It is an
INTENT(OUT) argument. It is assigned the significant length of the command
argument specified by NUMBER. The significant length may include trailing blanks
if the processor allows command arguments with significant trailing blanks. This
length does not consider any possible truncation or padding in assigning the
command argument value to the VALUE argument; in fact the VALUE argument need
not even be present. If the command argument length cannot be determined, a
length of 0 is assigned.
STATUS(optional) shall be scalar and of type default integer.
It is an INTENT(OUT) argument. It is assigned the value 0 if the argument
retrieval is successful. It is assigned a processor-dependent non-zero value if
the argument retrieval fails.

Note: One possible reason for failure is that NUMBER is negative or greater than
COMMAND_ARGUMENT_COUNT().

Example.
Program echo
integer :: i
character :: command*32, arg*128
call get_command_argument(0, command)
write (*,*) "Program name is: ", command
do i = 1 , command_argument_count()
call get_command_argument(i, arg)
write (*,*) "Argument ", i, " is ", arg
end do
end program echo

