To: J3 J3/ 00- 266R1
From Larry Meadows

Subj ect : Unr esol ved i ssue 255

Ref erences: J3/97-153, J3/00-139

In the context of /interop discussions at the W& neeting in Qulu, unresolved
i ssue 255 came up.

Thi s paper proposes to resolve issue 255 via a revision of the command |ine
argunent feature. The Revision is based on paper 00-139 that in turn was based
upon 97-153. 97-153 discusses the rationale in detail.

At the time, one of the arguments against 97-153 was that it provided no sinple
way to retrieve arbitrarily long command-1ine argunents; independent changes
have provided a clean resolution: Allocatable character |engths are now al |l owed
and provide a sinple neans of addressing this issue.

The approach of the current f2k draft has several shortcom ngs:

1. It cannot be done anywhere except in the main program thus forcing
architectural decisions on the user. This is particularly problematic if the
main programis not in Fortran or is otherwi se not nodifiable by the user who
needs the command-line access. In addition this linmtation is inconsistent with
interoperability with C (that is, Fortran/C progranms may well have a need to
access the conmand line in places other than the nain program when coded in the
nost natural fashion).

2. It is not user-inplenmentable, but can only be done by the conpiler (largely a
consequence of point 1). This neans that users cannot do this with existing
conpi l ers.

3. It defines new | anguage syntax and features, which invariably nmeans new

i ssues to get right. We probably haven't found all of themyet.

4. |f extrenely |long command-1ine argunents are enpl oyed, the facility as
currently defined is likely to be inefficient way to deal with them as it
forces all the conmand-line argunents to be returned in a single array. Thus if
there is one argunent of |ength 10,000 characters, and 1000 argunents of |ength
3 characters, you'll need a 10 negabyte array, about 1000 tines |arger than the
actual data

5. The approach of 97-153 is nore flexible in that the user can declare the
necessary variables in a way that fits the application. For exanple, they could
be derived type conponents or the size could be allocated with extra roomto
acconmopdat e requirenments such as null ternmination (as nentioned in paper 00-
121). Wth the current approach, these kinds of requirenments require copying the
data fromthe "pseudo dummy argument" to its preferred destination

6. It is not at all simlar to predom nant existing Fortran practice. It seens
likely that the above shortcom ngs woul d cause a substantial fraction of users
to continue to demand a procedure-based approach in addition to the approach of
t he standard.

Edits relative to 00-007:

{Del ete program args fromthe bnf}
[235:14] Delete "[(<programarg-list>)]
[235: 15] Delete

[235: 24-27] Delete

{Del ete section 11.1.1}

[236: 11-42, 237:1-45] Delete

{Del ete special case for char*(*)}
[68:16-17] Delete

{Del ete special case for assuned shape}
[73:20-21] Delete "or...processor"

{ add intrinsics }

[289: 15+] Add new intrinsics

COVVAND_ARGUMENT _COUNT()

GET_COMVAND([COVWAND, LENGTH, STATUS]
GET_COWMIVAND_ARGUMENT(NUVMBER, [VALUE, LENGTH, STATUS])

[298:9] Insert new section

13. 16. x COVIVAND_ ARGUVMENT _COUNT()

Description. Returns the nunmber of conmand argunents.

Class. Pure function.

Argunments. None.

Result Characteristics. Scal ar default integer.

Result Value. The result value is equal to the number of command ar guments
available. If there are no command argunents available or if the processor does
not support command argunents, then the result value is 0. If the processor has
a concept of a conmmand nane, the command nane does not count as one of the
conmand ar gunents.

[306: 9] Insert new sections

13. 16. x GET_COVIVAND([COVMAND, LENGTH, STATUS])

Description. Returns the entire conmand by which the program was i nvoked.

Cl ass. Pure subroutine.

Argunment s.

COWAND(optional) shall be scalar and of type default character.

It is an INTENT(QUT) argunent. It is assigned the entire command by which the
program was i nvoked.

If the command cannot be determnm ned, COWAND is assigned all blanks.
LENGTH(opti onal) shall be scalar and of type default integer.

It is an INTENT(QUT) argunent. It is assigned the significant length of the
command by which the program was invoked. The significant |length may include
trailing blanks if the processor all ows

commands with significant trailing blanks. This | ength does not consider any
possi bl e truncati on or padding in assigning the command to the COVWAND argunent;
in fact the COWAND ar gunent need not even be present. If the comand | ength
cannot be determ ned, a length of 0 is assigned.

STATUS(optional) shall be scalar and of type default integer.

It is an I NTENT(QUT) argunent. It is assigned the value 0 if the argunent
retrieval is successful. It is assigned a processor-dependent non-zero value if
the argunent retrieval fails.

13. 16. x GET_COVWAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])

Description. Returns a command ar gunent.

Cl ass. Pure subroutine.

Argunment s.

NUVBER shal | be scalar and of type default integer

It is an INTENT(IN) argunent.

It specifies the nunber of the command argunent that the other argunents give

i nformati on about. Useful values of NUMBER are those between 0 and the argunent
count returned by the COMWAND ARGUMENT _COUNT intrinsic. Gther values are

all owed, but will result in error status return (see bel ow).

Command argunent O is defined to be the command nane by which the program was

i nvoked if the processor has such a concept. It is allowed to call the
GET_COVMAND ARGUMENT procedure for command argunment nunber 0, even if the
processor does not define conmand nanes or ot her command arguments.

The renai ni ng command argunments are nunbered consecutively from1l to the
argunent count in an order determ ned by the processor

VALUE(optional) shall be scalar and of type default character

It is an I NTENT(QUT) argunent. It is assigned the value of the conmand argunent
specified by NUMBER. |f the command argunent val ue cannot be deternined, VALUE
is assigned all blanks.

LENGTH(opti onal) shall be scalar and of type default integer. It is an

| NTENT(QUT) argunent. It is assigned the significant | ength of the command
argunent specified by NUMBER The significant | ength may include trailing bl anks
if the processor allows conmand argunents with significant trailing blanks. This
| ength does not consider any possible truncation or padding in assigning the
conmmand argunent value to the VALUE argunent; in fact the VALUE argunent need
not even be present. If the comand argunent |ength cannot be determ ned, a
length of 0 is assigned.

STATUS(optional) shall be scalar and of type default integer.

It is an INTENT(QUT) argunent. It is assigned the value 0 if the argunent
retrieval is successful. It is assigned a processor-dependent non-zero value if
the argunent retrieval fails.

Not e: One possible reason for failure is that NUMBER i s negative or greater than
COVWVAND_ARGUMENT_COUNT() .

Exanpl e.

Pr ogram echo

i nteger :: i

character :: conmmand*32, arg*128

call get_command_ar gunent (0, conmand)
wite (*,*) "Programnane is: ", conmmand
doi =1, command_argunent_count ()

call get_comrand_argumnent (i, arg)

wite (*,*) "Argunent ", i, " is ", arg
end do

end program echo

