
22 October 2001 01-357

Subject: Comments on Section 9
From: Van Snyder

1 Edits

Edits refer to 01-007r3. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and] in the text.

[Editor: “file-unit number” ⇒ “file-unit-number” – i.e., insert a hyphen.] 168:16

[Editor: Delete the extraneous “.” at the end of the line.] 192:3

[Editor: Put a period at the end of the sentence (but don’t bother if section 2 is done, because 204:6
it replaces the paragraph).]

2 Subclauses 9.5.3 and 9.9 ought to be combined

Subclauses 9.5.3 and 9.9 contain some duplicative material, some contradictory material and
some incomplete material (mostly incomplete with respect to wait operations). There is no
subclause not in 9.5 that addresses error conditions, but error conditions can occur in other
than data transfer statements. To address these problems, subclauses 9.5.3 and 9.9 ought to
be combined.

[Editor: Delete.] 183:30-8

[Editor: “9.5.3” ⇒ “9.9” twice.] 166:20,21

[Editor: “9.5.3” ⇒ “9.9”.] 166:36

[Editor: “9.5.3” ⇒ “9.9”.] 184:28

[Editor: “9.5.3” ⇒ “9.9”.] 185:6

[Editor: “9.5.3” ⇒ “9.9”.] 188:2

[Editor: “9.5.3” ⇒ “9.9”.] 191:38

[Editor: “9.5.3” ⇒ “9.9”.] 192:3

[Editor: “9.5.3” ⇒ “9.9”.] 193:31

[Editor: Move [183:16-36] to replace the subclause heading and this paragraph. This paragraph 203:3-7
is useless and repetitive introductory waffle, so it’s not a loss to just replace it.]

[Editor: Delete “(9.5.3)” twice.] 203:22,37

[Editor: Delete “(9.5.3)” twice.] 204:5

[Editor: Delete “(9.5.3)” thrice.] 204:16-17

9.9.3 Error conditions and the ERR= specifier 203:36-38

If an error condition occurs during execution of a data transfer the position of the file becomes
indeterminate. [This is here because it occurs independently of whether the statement contains
an ERR= or an IOSTAT= specifier. The lack of “statement” after “transfer” is intentional, to

22 October 2001 Page 1 of 3

22 October 2001 01-357

cover the case of an error condition occurring during a wait operation.]

If an error condition occurs during execution of an input/output statement that contains neither
an ERR= specifier nor an IOSTAT= specifier, execution of the program is terminated. If an
error condition occurs during execution of an input/output statement that contains either an
ERR= specifier or an IOSTAT= specifier

[Editor: Insert “, if any,” after “list”.] 203:39

(2) If the statement is a data transfer statement or the error condition occurs during a 203:40
wait operation, all implied DO variables in the statement that initiated the transfer
become undefined.

(51

2
) If the statement is a READ statement or the error condition occurs in a wait oper- 204:2+

ation for a transfer initiated by a READ statement, all input list items or namelist
group objects in the statement that initiated the transfer become undefined. [Is the
“in” part good enough to cover namelist group objects?]

[Editor: “Execution” ⇒ “If an ERR= specifier appears, execution”.] 204:3

9.9.4 End-of-file conditions and the END= specifier 204:4-6

If an end-of-file condition occurs during execution of an input/output statement that contains
neither an END= specifier nor an IOSTAT= specifier, execution of the program is terminated.
Otherwise if an error condition does not occur [we don’t need the “If an end-of-file condition oc-
curs during execution of an input/output statement...” part that we needed for error conditions,
because end-of-file conditions can only occur during execution of input/output statements]

(11

3
) All implied DO variables in the statement that initiated the transfer become unde- 204:7+

fined.

(12

3
) If the statement is a READ statement or the end-of-file condition occurs in a wait

operation for a transfer initiated by a READ statement, all input list items or
namelist group objects in the statement that initiated the transfer become undefined.

[Editor: “input”⇒ “input/output” twice to cover the case of an end-of-file condition occurring 204:10,12
during a wait operation.]

[Editor: “Execution” ⇒ “If an END= specifier appears, execution”.] 204:14

9.9.5 End-of-record conditions and the EOR= specifier 204:15-17

[This needs to be checked carefully because the material from which it is taken at [183:37-42]
and [1884:7-8] is difficult to follow, and may be contradictory.]

If an end-of-record condition occurs during a data transfer initiated by a nonadvancing input
statement, the statement in which the condition is detected has neither an EOR= nor an IO-
STAT= specifier, and the pad mode has the value NO, execution of the program is terminated.
Otherwise if neither an error nor an end-of-file condition occurs

(21

2
) All implied DO variables become undefined. 204:21+

[Editor: “input” ⇒ “input/output” twice to cover the case of an end-of-record condition oc- 204:23,25
curring during a wait operation.]

[Editor: “Execution” ⇒ “If an EOR= specifier appears, execution”.] 204:29

[Editor: Move [203:8-35] to here.] 204:29+

22 October 2001 Page 2 of 3

22 October 2001 01-357

[Editor: “9.5.3” ⇒ “9.9”.] 384:24

3 Don’t know what to do

The term “permanently” is a bit extreme. 169:9

This constraint is rather fatuous, given that one can do a nonadvancing asynchronous read, 1777:19
and then put an EOR= specifier in a WAIT statement.

The explanation that a variable may be a pending input/output storage sequence affector in 179:27-29
some situations and not others is schizophrenic. First it discusses different scoping units, and
then different instants of time. Which is it?

Appears to contradict [183:37-42]. This paragraph is deleted by edits proposed in section 2. 184:7-8

Is there a set of specifiers that is allowed for inquire by name but not inquire by unit, or 197:49+
vice-versa? If so, a summary here would be useful.

Should io-implied-do variable be io-implied-do-object? 205:2,5

4 Very Minor Technical Enhancement

[There is no obvious reason why backspacing over records written using list-directed or namelist 195:31
formatting is prohibited. Records are perfectly well defined in these cases. The problem is that
one might not know where a record boundary is. But this also applies in the case of “ordinary”
formatted output that has slash edit descriptors or in which format reversion takes place.]

NOTE 9.49
1

2

Backspacing over records written by list-directed or namelist formatting should only be
done with care. The positions of record boundaries in output produced by list-directed
or namelist formatting are not specified by this standard.

22 October 2001 Page 3 of 3

