
28 June 2002 J3/02-221

Subject: Comments on Section 16
From: Van Snyder

1 Edits1

Edits refer to 02-007r2. Page and line numbers are displayed in the margin. Absent other2

instructions, a page and line number or line number range implies all of the indicated text is to3

be replaced by associated text, while a page and line number followed by + (-) indicates that4

associated text is to be inserted after (before) the indicated line. Remarks are noted in the5

margin, or appear between [and] in the text.6

[At [63:2], we see that an enumeration is a type alias, and an enumerator is a named constant. 394:6-77

The list at [394:4-7] has named constants, type aliases and enumerations, but not enumerators.8

For consistency, either enumerators need to be in the list, or enumerations don’t need to be.9

Choose the latter for simplicity. Editor: Delete “enumerations,”.]10

[It’s unlikely that one name is used to identify another. Editor: Delete “the name of” twice.] 394:23, 2711

[It’s unlikely that one name is used to identify another. Editor: Delete “the name of”.] 395:512

[Editor: Delete Note 16.7. It’s said better at [334:31-34]. If we don’t delete it, replace “7.1.4.1” 396:bottom13

by “13.7.84” and move Note 16.7 to [275:10+] because subclause 16.2.3 is about generic decla-14

rations, but Note 16.7 is about references.]15

[“A ... has the scope of a derived-type definition.” Which derived-type definition? Editor: “of 397:2,5,816

a” ⇒ “of its” thrice.]17

[Editor: Delete the first “derived”.] 397:518

[I don’t think that scoping units make references. Editor: “making” ⇒ “in which the”; insert 397:2319

“occurs” after the first “procedure”.]20

[We never say that the entities discussed in this subclause are construct entities – we just define 397:25+21

their scopes. We make a list of local entities at the beginning of 16.2, so it seems reasonable to22

make a list of construct entities here. This also says they’re variables.]23

Variables that appear as DO variables of implied-DOs in DATA statements or array construc-24

tors, as dummy arguments in statement function statements, or as index-names in FORALL atate-25

ments are statement entities. Variables that appear as index-names in FORALL constructs or26

associate-names in SELECT TYPE or ASSOCIATE constructs are construct entities.27

[Editor: “index-name” ⇒ “index-name”.] 397:3328

[Implies that a FORALL construct has only one index-name. Editor: “the index-name” ⇒ 398:11-1229

“any of its index-names”; “a nested . . . index-name” ⇒ “an index-name of a FORALL state-30

ment or FORALL construct shall not be the same as an index-name of a containing FORALL31

construct”.]32

[It isn’t clear that entities not named in IMPORT statements are not accessible by host asso- 399:1233

ciation. Editor: Insert “, and only to those entities” after “body”.]34

[An interface body is a local entity. Editor: “, procedure-declaration-stmt , or interface-body” 399:1835

⇒ “or procedure-declaration-stmt”.]36

[Local entities are already listed at [394:3-10]. We don’t need to list them again. Editor: “A 399:20-400:237

name ... nongeneric name” ⇒ “Any entity of the host that has the same nongeneric name as a38

local entity”. If we don’t remove the list, at least make it consistent with [394:3-10] by adding39

28 June 2002 Page 1 of 2

28 June 2002 J3/02-221

“an interface-body” somewhere. Then, put the list in the same order as at [394:3-10] so it’s1

easier to verify we’re not committing the error Dick Weaver observed: “Say it twice, say it2

wrong at least once.”]3

[The essence of Note 16.10 is on the previous page, and, with the edit for [399:12], almost 400:8+1-34

verbatim. Editor: Delete Note 16.10.]5

[If an external or dummy procedure has an explicit interface, it thereby has the EXTERNAL 400:96

attribute, so “with an implicit interface” is redundant. Editor: Delete it.]7

[Which scoping unit is “that” scoping unit? It could be the inner one, a host scoping unit, or 400:13,168

a module. Editor: “that scoping unit” ⇒ “scoping unit from which it is accessed” twice.]9

2 Is this a spec change, a stealth interp, or just clean-up?10

The following edits, if implemented, would specify that the appearance of a name as the dummy11

argument of a statement function does not constitute an implicit declaration of a variable in12

the scoping unit that contains it. Is this a spec change, a stealth interp, or just clean-up?13

[Now that we have defined “statement entity” and “construct entity” we can simplify the part 397:30-3214

about it not being an implicit declaration of a variable in the scoping unit that contains its15

statement or construct (and also specify it for statement function dummy arguments at the16

same time). Editor: Delete.]17

[Editor: Delete “The appearance ... construct.”] 397:36-3818

The appearance of a name as the name of a statement or construct entity is not an implicit 397:41+
Same ¶

19

declaration of a variable of that name whose scope is the scoping unit that contains its statement20

or construct. A statement or construct entity is not accessible outside of its statement or21

construct.22

3 Not sure what to do23

[394:4] refers to “Named variables that are not statement or construct entities.” I can’t find24

where statement and construct entities are defined to be variables. So “named variables that25

are not statement or construct entities” appears to be just “named variables”. That’s probably26

wrong, so we should perhaps say somewhere that statement and construct entities are variables.27

[394:19-395:6] doesn’t make sense. [394:19-20] claims to be about the names of local entities.28

Then the next three items introduced by that sentence are about procedure names within their29

subprograms. A name for an external procedure isn’t a local name within its subprogram, but30

the parenthetic remark says that one usage of the procedure name is allowed only for module31

or internal procedures, implying that the other case, an external procedure, is a local entity.32

If a procedure is recursively referenced from within itself, does the procedure name identify33

that reference?34

The parts about common blocks appear to be adequately covered by 16.2.1.35

The “except” part of the intro to these items doesn’t make sense: The appearance of a procedure36

name within that procedure isn’t “in another scoping unit.”37

If items (1)–(3) actually do make sense, we need to say something about referring to the38

procedure name to get the interface for a procedure pointer or deferred type-bound procedure39

declared within the subprogram. These items appear to prohibit such usages.40

28 June 2002 Page 2 of 2

