
J3/06-169r1 Clause 5 rewrite results 2006/05/11

70

2006/05/11 Clause 5 rewrite results J3/06-169r1

5 Attribute declarations and specifications1

5.1 General2

Every data object has a type and rank and may have type parameters and other attributes that determine3

the uses of the object. Collectively, these properties are the attributes of the object. The type of a4

named data object is either specified explicitly in a type declaration statement or determined implicitly5

by the first letter of its name (5.5). All of its attributes may be specified in a type declaration statement6

or individually in separate specification statements.7

A function has a type and rank and may have type parameters and other attributes that determine the8

uses of the function. The type, rank, and type parameters are the same as those of its result variable.9

A subroutine does not have a type, rank, or type parameters, but may have other attributes that10

determine the uses of the subroutine.11

5.2 Type declaration statements12

5.2.1 Syntax13

R501 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list14

The type declaration statement specifies the type of the entities in the entity declaration list. The type15

and type parameters are those specified by declaration-type-spec, except that the character length type16

parameter may be overridden for an entity by the appearance of * char-length in its entity-decl .17

R502 attr-spec is access-spec18

or ALLOCATABLE19

or ASYNCHRONOUS20

or DIMENSION (array-spec)21

or EXTERNAL22

or INTENT (intent-spec)23

or INTRINSIC24

or language-binding-spec25

or OPTIONAL26

or PARAMETER27

or POINTER28

or PROTECTED29

or SAVE30

or TARGET31

or VALUE32

or VOLATILE33

34

C501 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt .35

C502 (R501) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall36

consist of a single entity-decl .37

C503 (R501) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure38

names.39

71

J3/06-169r1 Clause 5 rewrite results 2006/05/11

The type declaration statement also specifies the attributes whose keywords appear in the attr-spec,1

except that the DIMENSION attribute may be specified or overridden for an entity by the appearance2

of array-spec in its entity-decl .3

R503 entity-decl is object-name [(array-spec)] [* char-length] [initialization]4

or function-name [* char-length]5

C504 (R503) If the entity is not of type character, * char-length shall not appear.6

C505 (R501) If initialization appears, a double-colon separator shall appear before the entity-decl-list.7

C506 (R503) An initialization shall not appear if object-name is a dummy argument, a function result,8

an object in a named common block unless the type declaration is in a block data program unit,9

an object in blank common, an allocatable variable, an external function, an intrinsic function,10

or an automatic object.11

C507 (R503) An initialization shall appear if the entity is a named constant (5.3.11).12

C508 (R503) The function-name shall be the name of an external function, an intrinsic function, a13

function dummy procedure, or a statement function.14

R504 object-name is name15

C509 (R504) The object-name shall be the name of a data object.16

R505 initialization is = initialization-expr17

or => null-init18

R506 null-init is function-reference19

C510 (R503) If => appears in initialization, the entity shall have the POINTER attribute. If =20

appears in initialization, the entity shall not have the POINTER attribute.21

C511 (R506) The function-reference shall be a reference to the NULL intrinsic function with no22

arguments.23

A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.6. An24

explicit type declaration statement is not required; however, it is permitted. Specifying a type for a25

generic intrinsic function name in a type declaration statement is not sufficient, by itself, to remove the26

generic properties from that function.27

An automatic data object is a nondummy data object with a type parameter or array bound that28

depends on the value of a specification-expr that is not an initialization expression.29

NOTE 5.1
An automatic object shall not have the SAVE attribute and shall not appear in a common block.

If a type parameter in a declaration-type-spec or in a char-length in an entity-decl is defined by an30

expression that is not an initialization expression, the type parameter value is established on entry to31

the procedure and is not affected by any redefinition or undefinition of the variables in the expression32

during execution of the procedure.33

5.2.2 Initialization34

The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute35

specifies that the entity is a variable with explicit initialization. Explicit initialization alternatively36

may be specified in a DATA statement unless the variable is of a derived type for which default initial-37

ization is specified. If initialization is =initialization-expr , the variable is initially defined with the value38

72

2006/05/11 Clause 5 rewrite results J3/06-169r1

specified by the initialization-expr ; if necessary, the value is converted according to the rules of intrinsic1

assignment (7.4.1.3) to a value that agrees in type, type parameters, and shape with the variable. A2

variable, or part of a variable, shall not be explicitly initialized more than once in a program. If the3

variable is an array, it shall have its shape specified in either the type declaration statement or a previous4

attribute specification statement in the same scoping unit.5

If initialization is =>null-init , the variable shall be a pointer, and its initial association status is disas-6

sociated.7

Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which8

may be confirmed by explicit specification.9

5.2.3 Examples of type declaration statements10

NOTE 5.2

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
REAL (KIND (0.0D0)) A
REAL (KIND = 2) B
COMPLEX (KIND = KIND (0.0D0)) :: C
CHARACTER (LEN = 10, KIND = 2) A
CHARACTER B, C *20
TYPE (PERSON) :: CHAIRMAN
TYPE(NODE), POINTER :: HEAD => NULL ()
TYPE (humongous_matrix (k=8, d=1000)) :: mat

(The last line above uses a type definition from Note 4.25.)

5.3 Attributes11

5.3.1 Constraints12

An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute13

specification statement (5.4). The following constraints apply to attributes.14

C512 An entity shall not be explicitly given any attribute more than once in a scoping unit.15

C513 An array-spec for a function result that does not have the ALLOCATABLE or POINTER16

attribute shall be an explicit-shape-spec-list.17

C514 The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be specified for a dummy18

argument of a procedure that has a proc-language-binding-spec.19

5.3.2 Accessibility attribute20

The accessibility attribute specifies the accessibility of an entity via a particular identifier.21

73

J3/06-169r1 Clause 5 rewrite results 2006/05/11

R507 access-spec is PUBLIC1

or PRIVATE2

C515 (R507) An access-spec shall appear only in the specification-part of a module.3

Identifiers that are specified in a module or accessible in that module by use association have either4

the PUBLIC or PRIVATE attribute. Identifiers for which an access-spec is not explicitly specified in5

that module have the default accessibility attribute for that module. The default accessibility attribute6

for a module is PUBLIC unless it has been changed by a PRIVATE statement (5.4.1). Only identifiers7

that have the PUBLIC attribute in that module are available to be accessed from that module by use8

association.9

NOTE 5.3
In order for an identifier to be accessed by use association, it must have the PUBLIC attribute in
the module from which it is accessed. It can nonetheless have the PRIVATE attribute in a module
in which it is accessed by use association, and therefore not be available for use association from
a module where it is PRIVATE.

NOTE 5.4
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

5.3.3 ALLOCATABLE attribute10

An entity with the ALLOCATABLE attribute is a variable for which space is allocated by an AL-11

LOCATE statement (6.3.1) or by an intrinsic assignment statement (7.4.1.3).12

5.3.4 ASYNCHRONOUS attribute13

An entity with the ASYNCHRONOUS attribute is a variable that may be subject to asynchronous14

input/output.15

The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if16

(1) the variable appears in an executable statement or specification expression in that scoping17

unit and18

(2) any statement of the scoping unit is executed while the variable is a pending I/O storage19

sequence affector (9.5.1.4).20

Use of a variable in an asynchronous input/output statement can imply the ASYNCHRONOUS attribute;21

see subclause (9.5.1.4).22

An object may have the ASYNCHRONOUS attribute in a particular scoping unit without necessarily23

having it in other scoping units (11.2.1, 16.4.1.3). If an object has the ASYNCHRONOUS attribute,24

then all of its subobjects also have the ASYNCHRONOUS attribute.25

NOTE 5.5
The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending
input/output storage sequence (the actual memory locations on which asynchronous input/output
is being performed) while the scoping unit is in execution. This information could be used by the
compiler to disable certain code motion optimizations.

The ASYNCHRONOUS attribute is similar to the VOLATILE attribute. It is intended to facilitate

74

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.5 (cont.)

traditional code motion optimizations in the presence of asynchronous input/output.

5.3.5 BIND attribute for data entities1

The BIND attribute for a variable or common block specifies that it is capable of interoperating with a2

C variable that has external linkage (15.3).3

R508 language-binding-spec is BIND (C [, NAME = scalar-char-initialization-expr])4

C516 An entity with the BIND attribute shall be a common block, variable, or procedure.5

C517 A variable with the BIND attribute shall be declared in the specification part of a module.6

C518 A variable with the BIND attribute shall be interoperable (15.2).7

C519 Each variable of a common block with the BIND attribute shall be interoperable.8

C520 (R508) The scalar-char-initialization-expr shall be of default character kind. If the value of the9

scalar-char-initialization-expr after discarding leading and trailing blanks has nonzero length,10

it shall be valid as an identifier on the companion processor.11

NOTE 5.6
The C International Standard provides a facility for creating C identifiers whose characters are not
restricted to the C basic character set. Such a C identifier is referred to as a universal character
name (6.4.3 of the C International Standard). The name of such a C identifier might include
characters that are not part of the representation method used by the processor for type default
character. If so, the C entity cannot be referenced from Fortran.

The BIND attribute for a variable or common block implies the SAVE attribute, which may be confirmed12

by explicit specification.13

5.3.6 DIMENSION attribute14

5.3.6.1 General15

The DIMENSION attribute specifies that an entity is an array. The rank or rank and shape is16

specified by its array-spec.17

R509 array-spec is explicit-shape-spec-list18

or assumed-shape-spec-list19

or deferred-shape-spec-list20

or assumed-size-spec21

C521 (R509) The maximum rank is seven.22

NOTE 5.7
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL A (:), B (0:) ! Assumed-shape arrays
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer

75

J3/06-169r1 Clause 5 rewrite results 2006/05/11

NOTE 5.7 (cont.)

REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array

5.3.6.2 Explicit-shape array1

An explicit-shape array is a named array that is declared with an explicit-shape-spec-list. This specifies2

explicit values for the bounds in each dimension of the array.3

R510 explicit-shape-spec is [lower-bound :] upper-bound4

R511 lower-bound is specification-expr5

R512 upper-bound is specification-expr6

C522 (R510) An explicit-shape-spec whose bounds are not initialization expressions shall appear only7

in a subprogram or interface body.8

If an explicit-shape array has bounds that are not initialization expressions, the bounds, and hence9

shape, are determined at entry to the procedure by evaluating the bounds expressions. The bounds of10

such an array are unaffected by the redefinition or undefinition of any variable during execution of the11

procedure.12

The values of each lower-bound and upper-bound determine the bounds of the array along a particular13

dimension and hence the extent of the array in that dimension. The value of a lower bound or an upper14

bound may be positive, negative, or zero. The subscript range of the array in that dimension is the set15

of integer values between and including the lower and upper bounds, provided the upper bound is not16

less than the lower bound. If the upper bound is less than the lower bound, the range is empty, the17

extent in that dimension is zero, and the array is of zero size. If the lower-bound is omitted, the default18

value is 1. The rank is equal to the number of explicit-shape-specs.19

5.3.6.3 Assumed-shape array20

An assumed-shape array is a nonpointer dummy argument array that takes its shape from the asso-21

ciated actual argument array.22

R513 assumed-shape-spec is [lower-bound] :23

The rank is equal to the number of colons in the assumed-shape-spec-list.24

The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding25

dimension of the associated actual argument array. If the lower bound value is d and the extent of the26

corresponding dimension of the associated actual argument array is s, then the value of the upper bound27

is s + d− 1. If lower-bound appears it specifies the lower bound; otherwise the lower bound is 1.28

5.3.6.4 Deferred-shape array29

A deferred-shape array is an allocatable array or an array pointer.30

An allocatable array is an array that has the ALLOCATABLE attribute and a specified rank, but its31

bounds, and hence shape, are determined by allocation or argument association.32

An array pointer is an array with the POINTER attribute and a specified rank. Its bounds, and hence33

shape, are determined when it is associated with a target.34

R514 deferred-shape-spec is :35

C523 An array that has the POINTER or ALLOCATABLE attribute shall have an array-spec that is36

a deferred-shape-spec-list.37

76

2006/05/11 Clause 5 rewrite results J3/06-169r1

The rank is equal to the number of colons in the deferred-shape-spec-list.1

The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are2

undefined. No part of such an array shall be referenced or defined; however, the array may appear as an3

argument to an intrinsic inquiry function as specified in 13.1.4

The bounds of each dimension of an allocatable array are those specified when the array is allocated.5

The bounds of each dimension of an array pointer may be specified in two ways:6

(1) in an ALLOCATE statement (6.3.1) when the target is allocated;7

(2) by pointer assignment (7.4.2).8

The bounds of the array pointer or allocatable array are unaffected by any subsequent redefinition or9

undefinition of variables on which the bounds’ expressions depend.10

5.3.6.5 Assumed-size array11

An assumed-size array is a dummy argument array whose size is assumed from that of an associated12

actual argument. The rank and extents may differ for the actual and dummy arrays; only the size of the13

actual array is assumed by the dummy array. An assumed-size array is declared with an assumed-size-14

spec.15

R515 assumed-size-spec is [explicit-shape-spec-list ,] [lower-bound :] *16

C524 An assumed-size-spec shall not appear except as the declaration of the array bounds of a dummy17

data argument.18

C525 An assumed-size array with INTENT (OUT) shall not be of a type for which default initialization19

is specified.20

The size of an assumed-size array is determined as follows.21

(1) If the actual argument associated with the assumed-size dummy array is an array of any22

type other than default character, the size is that of the actual array.23

(2) If the actual argument associated with the assumed-size dummy array is an array element24

of any type other than default character with a subscript order value of r (6.2.2.2) in an25

array of size x, the size of the dummy array is x− r + 1.26

(3) If the actual argument is a default character array, default character array element, or a27

default character array element substring (6.1.1), and if it begins at character storage unit t28

of an array with c character storage units, the size of the dummy array is MAX (INT ((c−29

t + 1)/e), 0), where e is the length of an element in the dummy character array.30

(4) If the actual argument is of type default character and is a scalar that is not an array element31

or array element substring designator, the size of the dummy array is MAX (INT (l/e), 0),32

where e is the length of an element in the dummy character array and l is the length of the33

actual argument.34

The rank is equal to one plus the number of explicit-shape-specs.35

An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last36

dimension and no shape. An assumed-size array name shall not be written as a whole array reference37

except as an actual argument in a procedure reference for which the shape is not required.38

If an explicit-shape-spec-list appears, it specifies the bounds of the first rank −1 dimensions. If lower-39

bound appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An40

assumed-size array may be subscripted or sectioned (6.2.2.3). The upper bound shall not be omitted41

from a subscript triplet in the last dimension.42

77

J3/06-169r1 Clause 5 rewrite results 2006/05/11

If an assumed-size array has bounds that are not initialization expressions, the bounds are determined1

at entry to the procedure. The bounds of such an array are unaffected by the redefinition or undefinition2

of any variable during execution of the procedure.3

5.3.7 EXTERNAL attribute4

The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure,5

procedure pointer, or block data subprogram.6

C526 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.7

In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by8

the subprogram.9

If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure10

pointer assignment, it shall be declared to have the EXTERNAL attribute.11

A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.12

5.3.8 INTENT attribute13

The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy14

argument is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy15

argument is suitable for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy16

argument is suitable for use both to receive data from and to return data to the invoking scoping unit.17

R516 intent-spec is IN18

or OUT19

or INOUT20

C527 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure21

pointer.22

C528 (R516) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable23

definition context (16.5.7).24

C529 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context25

(16.5.8).26

The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be de-27

fined nor become undefined during the execution of the procedure. The INTENT (IN) attribute for a28

pointer dummy argument specifies that during the execution of the procedure its association shall not29

be changed except that it may become undefined if the target is deallocated other than through the30

pointer (16.4.2.1.3).31

The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument32

becomes undefined on invocation of the procedure, except for any subcomponents that are default-33

initialized (4.5.4.5). Any actual argument that becomes associated with such a dummy argument shall34

be definable. The INTENT (OUT) attribute for a pointer dummy argument specifies that on invocation35

of the procedure the pointer association status of the dummy argument becomes undefined. Any actual36

argument associated with such a pointer dummy shall be a pointer variable.37

NOTE 5.8
If the actual argument is finalizable it will be finalized before undefinition and default initialization
of the dummy argument (4.5.6).

78

2006/05/11 Clause 5 rewrite results J3/06-169r1

The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument1

associated with the dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer2

dummy argument specifies that any actual argument associated with the dummy argument shall be a3

pointer variable.4

NOTE 5.9
The INTENT attribute for an allocatable dummy argument applies to both the allocation status
and the definition status. An actual argument associated with an INTENT(OUT) allocatable
dummy argument is deallocated on procedure invocation (6.3.3.1).

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of the5

associated actual argument (12.4.1.2, 12.4.1.3, 12.4.1.4).6

NOTE 5.10
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

If an object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.7

NOTE 5.11
If a dummy argument is a derived-type object with a pointer component, then the pointer as a
pointer is a subobject of the dummy argument, but the target of the pointer is not. Therefore, the
restrictions on subobjects of the dummy object apply to the pointer in contexts where it is used as
a pointer, but not in contexts where it is dereferenced to indicate its target. For example, if X is a
dummy argument of derived type with an integer pointer component P, and X has INTENT(IN),
then the statement

X%P => NEW_TARGET

is prohibited, but

X%P = 0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of
the dummy argument; they do not restrict the operations allowed on its target.

NOTE 5.12
Argument intent specifications serve several purposes in addition to documenting the intended use
of dummy arguments. A processor can check whether an INTENT (IN) dummy argument is used
in a way that could redefine it. A slightly more sophisticated processor could check to see whether
an INTENT (OUT) dummy argument could possibly be referenced before it is defined. If the
procedure’s interface is explicit, the processor can also verify that actual arguments corresponding
to INTENT (OUT) or INTENT (INOUT) dummy arguments are definable. A more sophisticated
processor could use this information to optimize the translation of the referencing scoping unit
by taking advantage of the fact that actual arguments corresponding to INTENT (IN) dummy
arguments will not be changed and that any prior value of an actual argument corresponding to

79

J3/06-169r1 Clause 5 rewrite results 2006/05/11

NOTE 5.12 (cont.)

an INTENT (OUT) dummy argument will not be referenced and could thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely
the result of executing that procedure. If there is any possibility that an argument should retain
its current value rather than being redefined, INTENT (INOUT) should be used rather than
INTENT (OUT), even if there is no explicit reference to the value of the dummy argument.
Because an INTENT(OUT) variable is considered undefined on entry to the procedure, any default
initialization specified for its type will be applied.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument
corresponding to an INTENT (INOUT) dummy argument is always required to be definable,
while an argument corresponding to a dummy argument without an INTENT attribute need be
definable only if the dummy argument is actually redefined.

5.3.9 INTRINSIC attribute1

The INTRINSIC attribute specifies that the entity is an intrinsic procedure. It may be a generic2

procedure (13.5), a specific procedure (13.6), or both.3

If the specific name of an intrinsic procedure (13.6) is used as an actual argument, the name shall be4

explicitly specified to have the INTRINSIC attribute. An intrinsic procedure whose specific name is5

marked with a bullet (•) in 13.6 shall not be used as an actual argument.6

C530 If the name of a generic intrinsic procedure is explicitly declared to have the INTRINSIC at-7

tribute, and it is also the generic name of one or more generic interfaces (12.3.2.1) accessible in8

the same scoping unit, the procedures in the interfaces and the specific intrinsic procedures shall9

all be functions or all be subroutines, and the characteristics of the specific intrinsic procedures10

and the procedures in the interfaces shall differ as specified in 16.2.3.11

5.3.10 OPTIONAL attribute12

The OPTIONAL attribute specifies that the dummy argument need not be associated with an actual13

argument in a reference to the procedure (12.4.1.6). The PRESENT intrinsic function can be used to14

determine whether an optional dummy argument is associated with an actual argument.15

C531 An entity with the OPTIONAL attribute shall be a dummy argument.16

5.3.11 PARAMETER attribute17

The PARAMETER attribute specifies that an entity is a named constant. The entity has the value18

specified by its initialization-expr , converted, if necessary, to the type, type parameters and shape of the19

entity.20

C532 An entity with the PARAMETER attribute shall not be a variable or a procedure.21

A named constant shall not be referenced unless it has been defined previously in the same statement,22

defined in a prior statement, or made accessible by use or host association.23

NOTE 5.13
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)

80

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.13 (cont.)

TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL ())

5.3.12 POINTER attribute1

Entities with the POINTER attribute can be associated with different data objects or procedures2

during execution of a program. A pointer is either a data pointer or a procedure pointer. Procedure3

pointers are described in 12.3.2.3.4

C533 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or5

TARGET attribute.6

C534 A procedure with the POINTER attribute shall have the EXTERNAL attribute.7

A data pointer shall not be referenced unless it is pointer associated with a target object that is defined.8

A data pointer shall not be defined unless it is pointer associated with a target object that is definable.9

If a data pointer is associated, the values of its deferred type parameters are the same as the values of10

the corresponding type parameters of its target.11

A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.12

NOTE 5.14
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

For a more elaborate example see C.2.1.

5.3.13 PROTECTED attribute13

The PROTECTED attribute imposes limitations on the usage of module entities.14

C535 The PROTECTED attribute shall be specified only in the specification part of a module.15

C536 An entity with the PROTECTED attribute shall be a procedure pointer or variable.16

C537 An entity with the PROTECTED attribute shall not be in a common block.17

C538 A nonpointer object that has the PROTECTED attribute and is accessed by use association18

shall not appear in a variable definition context (16.5.7) or as the data-target or proc-target in19

a pointer-assignment-stmt .20

C539 A pointer that has the PROTECTED attribute and is accessed by use association shall not21

appear in a pointer association context (16.5.8).22

Other than within the module in which an entity is given the PROTECTED attribute, or within any of23

its descendant submodules,24

(1) if it is a nonpointer object, it is not definable, and25

(2) if it is a pointer, its association status shall not be changed except that it may become26

undefined if its target is deallocated other than through the pointer (16.4.2.1.3) or if its27

target becomes undefined by execution of a RETURN or END statement.28

81

J3/06-169r1 Clause 5 rewrite results 2006/05/11

If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.1

NOTE 5.15
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f

CONTAINS
SUBROUTINE set_temperature_c(c)
REAL, INTENT(IN) :: c
temp_c = c
temp_f = temp_c*(9.0/5.0) + 32

END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp c and temp f cannot be modified
other than via the set temperature c procedure, thus keeping them consistent with each other.

5.3.14 SAVE attribute2

The SAVE attribute specifies that a variable retains its association status, allocation status, definition3

status, and value after execution of a RETURN or END statement unless it is a pointer and its target4

becomes undefined (16.4.2.1.3(4)). If it is a local variable of a subprogram it is shared by all instances5

(12.5.2.3) of the subprogram.6

Giving a common block the SAVE attribute confers the attribute on all variables in the common block.7

C540 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.8

C541 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic9

data object, or an object that is in a common block.10

A saved entity is an entity that has the SAVE attribute. An unsaved entity is an entity that does not11

have the SAVE attribute.12

The SAVE attribute has no effect on entities declared in a main program. If a common block has the13

SAVE attribute in any scoping unit that is not a main program, it shall have the SAVE attribute in14

every scoping unit that is not a main program.15

5.3.15 TARGET attribute16

The TARGET attribute specifies that a data object may have a pointer associated with it (7.4.2).17

An object without the TARGET attribute shall not have an accessible pointer associated with it.18

C542 An entity with the TARGET attribute shall be a variable.19

C543 An entity with the TARGET attribute shall not have the POINTER attribute.20

NOTE 5.16
In addition to variables explicitly declared to have the TARGET attribute, the objects created by
allocation of pointers (6.3.1.2) have the TARGET attribute.

If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET21

82

2006/05/11 Clause 5 rewrite results J3/06-169r1

attribute.1

NOTE 5.17
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

For a more elaborate example see C.2.2.

NOTE 5.18
Every object designator that starts from a target object will have either the TARGET or POINTER
attribute. If pointers are involved, the designator might not necessarily be a subobject of the
original target object, but because pointers may point only to targets, there is no way to end up
at a nonpointer that is not a target.

5.3.16 VALUE attribute2

The VALUE attribute specifies a type of argument association (12.4.1.2) for a dummy argument.3

C544 An entity with the VALUE attribute shall be a scalar dummy data object.4

C545 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT(INOUT),5

INTENT(OUT), POINTER, or VOLATILE attributes.6

C546 If an entity has the VALUE attribute, any length type parameter value in its declaration shall7

be omitted or specified by an initialization expression.8

5.3.17 VOLATILE attribute9

The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined,10

by means not specified by the program.11

C547 An entity with the VOLATILE attribute shall be a variable that is not an INTENT(IN) dummy12

argument.13

An object may have the VOLATILE attribute in a particular scoping unit without necessarily having14

it in other scoping units (11.2.1, 16.4.1.3). If an object has the VOLATILE attribute, then all of its15

subobjects also have the VOLATILE attribute.16

NOTE 5.19
The Fortran processor should use the most recent definition of a volatile object when a value
is required. Likewise, it should make the most recent Fortran definition available. It is the
programmer’s responsibility to manage any interaction with non-Fortran processes.

A pointer with the VOLATILE attribute may additionally have its association status, dynamic type and17

type parameters, and array bounds changed by means not specified by the program.18

NOTE 5.20
If the target of a pointer is referenced, defined, or becomes undefined, by means not specified
by the program, while the pointer is associated with the target, then the pointer shall have the
VOLATILE attribute. Usually a pointer should have the VOLATILE attribute if its target has
the VOLATILE attribute. Similarly, all members of an EQUIVALENCE group should have the

83

J3/06-169r1 Clause 5 rewrite results 2006/05/11

NOTE 5.20 (cont.)

VOLATILE attribute if one member has the VOLATILE attribute.

An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic1

type and type parameters, and array bounds changed by means not specified by the program.2

5.4 Attribute specification statements3

5.4.1 Accessibility statements4

R517 access-stmt is access-spec [[::] access-id-list]5

R518 access-id is use-name6

or generic-spec7

C548 (R517) An access-stmt shall appear only in the specification-part of a module. Only one ac-8

cessibility statement with an omitted access-id-list is permitted in the specification-part of a9

module.10

C549 (R518) Each use-name shall be the name of a named variable, procedure, derived type, named11

constant, or namelist group.12

An access-stmt with an access-id-list specifies the accessibility attribute (5.3.2), PUBLIC or PRIVATE,13

of each access-id in the list. An access-stmt without an access-id list specifies the default accessibility14

that applies to all potentially accessible identifiers in the specification-part of the module. The statement15

PUBLIC16

specifies a default of public accessibility. The statement17

PRIVATE18

specifies a default of private accessibility. If no such statement appears in a module, the default is public19

accessibility.20

NOTE 5.21
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

5.4.2 ALLOCATABLE statement21

R519 allocatable-stmt is ALLOCATABLE [::]22

object-name [(array-spec)]23

[, object-name [(array-spec)]] ...24

This statement specifies the ALLOCATABLE attribute (5.3.3) for a list of objects.25

NOTE 5.22
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR

84

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.22 (cont.)

ALLOCATABLE :: A (:, :), B, SCALAR

5.4.3 ASYNCHRONOUS statement1

R520 asynchronous-stmt is ASYNCHRONOUS [::] object-name-list2

The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (5.3.4) for a list of objects.3

5.4.4 BIND statement4

R521 bind-stmt is language-binding-spec [::] bind-entity-list5

R522 bind-entity is entity-name6

or / common-block-name /7

C550 (R521) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of8

a single bind-entity .9

The BIND statement specifies the BIND attribute (5.3.5) for a list of variables and common blocks.10

5.4.5 DATA statement11

R523 data-stmt is DATA data-stmt-set [[,] data-stmt-set] ...12

This statement specifies explicit initialization (5.2.2).13

A variable, or part of a variable, shall not be explicitly initialized more than once in a program. If a14

nonpointer object has been specified with default initialization in a type definition, it shall not appear15

in a data-stmt-object-list.16

A variable that appears in a DATA statement and has not been typed previously may appear in a17

subsequent type declaration only if that declaration confirms the implicit typing. An array name,18

array section, or array element that appears in a DATA statement shall have had its array properties19

established by a previous specification statement.20

Except for variables in named common blocks, a named variable has the SAVE attribute if any part of21

it is initialized in a DATA statement, and this may be confirmed by explicit specification.22

R524 data-stmt-set is data-stmt-object-list / data-stmt-value-list /23

R525 data-stmt-object is variable24

or data-implied-do25

R526 data-implied-do is (data-i-do-object-list , data-i-do-variable =26

scalar-int-expr , scalar-int-expr [, scalar-int-expr])27

R527 data-i-do-object is array-element28

or scalar-structure-component29

or data-implied-do30

R528 data-i-do-variable is scalar-int-variable31

C551 (R525) In a variable that is a data-stmt-object , any subscript, section subscript, substring start-32

ing point, and substring ending point shall be an initialization expression.33

C552 (R525) A variable whose designator appears as a data-stmt-object or a data-i-do-object shall34

not be a dummy argument, made accessible by use association or host association, in a named35

common block unless the DATA statement is in a block data program unit, in a blank common36

85

J3/06-169r1 Clause 5 rewrite results 2006/05/11

block, a function name, a function result name, an automatic object, or an allocatable variable.1

C553 (R525) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object2

designator in which a pointer appears other than as the entire rightmost part-ref .3

C554 (R528) The data-i-do-variable shall be a named variable.4

C555 (R526) A scalar-int-expr of a data-implied-do shall involve as primaries only constants, subob-5

jects of constants, or DO variables of the containing data-implied-dos, and each operation shall6

be intrinsic.7

C556 (R527) The array-element shall be a variable.8

C557 (R527) The scalar-structure-component shall be a variable.9

C558 (R527) The scalar-structure-component shall contain at least one part-ref that contains a sub-10

script-list.11

C559 (R527) In an array-element or a scalar-structure-component that is a data-i-do-object , any sub-12

script shall be an expression whose primaries are either constants, subobjects of constants, or13

DO variables of this data-implied-do or the containing data-implied-dos, and each operation shall14

be intrinsic.15

R529 data-stmt-value is [data-stmt-repeat *] data-stmt-constant16

R530 data-stmt-repeat is scalar-int-constant17

or scalar-int-constant-subobject18

C560 (R530) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named con-19

stant, it shall have been declared previously in the scoping unit or made accessible by use20

association or host association.21

R531 data-stmt-constant is scalar-constant22

or scalar-constant-subobject23

or signed-int-literal-constant24

or signed-real-literal-constant25

or null-init26

or structure-constructor27

C561 (R531) If a DATA statement constant value is a named constant or a structure constructor, the28

named constant or derived type shall have been declared previously in the scoping unit or made29

accessible by use or host association.30

C562 (R531) If a data-stmt-constant is a structure-constructor , it shall be an initialization expression.31

R532 int-constant-subobject is constant-subobject32

C563 (R532) int-constant-subobject shall be of type integer.33

R533 constant-subobject is designator34

C564 (R533) constant-subobject shall be a subobject of a constant.35

C565 (R533) Any subscript, substring starting point, or substring ending point shall be an initializa-36

tion expression.37

The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to38

as “sequence of variables” in subsequent text. A nonpointer array whose unqualified name appears39

as a data-stmt-object or data-i-do-object is equivalent to a complete sequence of its array elements in40

86

2006/05/11 Clause 5 rewrite results J3/06-169r1

array element order (6.2.2.2). An array section is equivalent to the sequence of its array elements in1

array element order. A data-implied-do is expanded to form a sequence of array elements and structure2

components, under the control of the data-i-do-variable, as in the DO construct (8.1.6.4).3

The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat4

indicates the number of times the following data-stmt-constant is to be included in the sequence; omission5

of a data-stmt-repeat has the effect of a repeat factor of 1.6

A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the7

expanded sequence of variables, but a zero-length scalar character variable does contribute a variable8

to the expanded sequence. A data-stmt-constant with a repeat factor of zero contributes no data-stmt-9

constants to the expanded sequence of scalar data-stmt-constants.10

The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each11

data-stmt-constant specifies the initial value or null-init for the corresponding variable. The lengths of12

the two expanded sequences shall be the same.13

A data-stmt-constant shall be null-init if and only if the corresponding data-stmt-object has the POINT-14

ER attribute. The initial association status of a pointer data-stmt-object is disassociated.15

A data-stmt-constant other than null-init shall be compatible with its corresponding variable according16

to the rules of intrinsic assignment (7.4.1.2). The variable is initially defined with the value specified by17

the data-stmt-constant ; if necessary, the value is converted according to the rules of intrinsic assignment18

(7.4.1.3) to a value that agrees in type, type parameters, and shape with the variable.19

If a data-stmt-constant is a boz-literal-constant , the corresponding variable shall be of type integer. The20

boz-literal-constant is treated as if it were an int-literal-constant with a kind-param that specifies the21

representation method with the largest decimal exponent range supported by the processor.22

NOTE 5.23
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL, DIMENSION (100, 100) :: SKEW
TYPE (NODE), POINTER :: HEAD_OF_LIST
TYPE (PERSON) MYNAME, YOURNAME
DATA NAME / ’JOHN DOE’ /, MILES / 10 * 0 /
DATA ((SKEW (K, J), J = 1, K), K = 1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J), J = K + 1, 100), K = 1, 99) / 4950 * 1.0 /
DATA HEAD_OF_LIST / NULL() /
DATA MYNAME / PERSON (21, ’JOHN SMITH’) /
DATA YOURNAME % AGE, YOURNAME % NAME / 35, ’FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right
because the length of the constant is less than the length of the variable. All ten elements of
the integer array MILES are initialized to zero. The two-dimensional array SKEW is initialized
so that the lower triangle of SKEW is zero and the strict upper triangle is one. The structures
MYNAME and YOURNAME are declared using the derived type PERSON from Note 4.18. The
pointer HEAD OF LIST is declared using the derived type NODE from Note 4.37; it is initially
disassociated. MYNAME is initialized by a structure constructor. YOURNAME is initialized by
supplying a separate value for each component.

87

J3/06-169r1 Clause 5 rewrite results 2006/05/11

5.4.6 DIMENSION statement1

R534 dimension-stmt is DIMENSION [::] array-name (array-spec)2

[, array-name (array-spec)] ...3

This statement specifies the DIMENSION attribute (5.3.6) for a list of objects.4

NOTE 5.24
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

5.4.7 INTENT statement5

R535 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list6

This statement specifies the INTENT attribute (5.3.8) for the dummy arguments in the list.7

NOTE 5.25
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

5.4.8 OPTIONAL statement8

R536 optional-stmt is OPTIONAL [::] dummy-arg-name-list9

This statement specifies the OPTIONAL attribute (5.3.10) for the dummy arguments in the list.10

NOTE 5.26
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

5.4.9 PARAMETER statement11

The PARAMETER statement specifies the PARAMETER attribute (5.3.11) and the values for the12

named constants in the list.13

R537 parameter-stmt is PARAMETER (named-constant-def -list)14

R538 named-constant-def is named-constant = initialization-expr15

If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to16

have a type or type parameter value that differs from the type and type parameters it would have if17

declared implicitly (5.5). A named array constant defined by a PARAMETER statement shall have its18

shape specified in a prior specification statement.19

The value of each named constant is that specified by the corresponding initialization expression; if20

necessary, the value is converted according to the rules of intrinsic assignment (7.4.1.3) to a value that21

agrees in type, type parameters, and shape with the named constant.22

88

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.27
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

5.4.10 POINTER statement1

R539 pointer-stmt is POINTER [::] pointer-decl-list2

R540 pointer-decl is object-name [(deferred-shape-spec-list)]3

or proc-entity-name4

This statement specifies the POINTER attribute (5.3.12) for a list of entities.5

NOTE 5.28
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

5.4.11 PROTECTED statement6

R541 protected-stmt is PROTECTED [::] entity-name-list7

The PROTECTED statement specifies the PROTECTED attribute (5.3.13) for a list of entities.8

5.4.12 SAVE statement9

R542 save-stmt is SAVE [[::] saved-entity-list]10

R543 saved-entity is object-name11

or proc-pointer-name12

or / common-block-name /13

R544 proc-pointer-name is name14

C566 (R542) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no15

other appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.16

A SAVE statement with a saved entity list specifies the SAVE attribute (5.3.14) for a list of entities. A17

SAVE statement without a saved entity list is treated as though it contained the names of all allowed18

items in the same scoping unit.19

NOTE 5.29
An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

5.4.13 TARGET statement20

R545 target-stmt is TARGET [::] object-name [(array-spec)]21

[, object-name [(array-spec)]] ...22

This statement specifies the TARGET attribute (5.3.15) for a list of objects.23

89

J3/06-169r1 Clause 5 rewrite results 2006/05/11

NOTE 5.30
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

5.4.14 VALUE statement1

R546 value-stmt is VALUE [::] dummy-arg-name-list2

The VALUE statement specifies the VALUE attribute (5.3.16) for a list of dummy arguments.3

5.4.15 VOLATILE statement4

R547 volatile-stmt is VOLATILE [::] object-name-list5

The VOLATILE statement specifies the VOLATILE attribute (5.3.17) for a list of objects.6

5.5 IMPLICIT statement7

In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all8

implicitly typed data entities whose names begin with one of the letters specified in the statement.9

Alternatively, it may indicate that no implicit typing rules are to apply in a particular scoping unit.10

R548 implicit-stmt is IMPLICIT implicit-spec-list11

or IMPLICIT NONE12

R549 implicit-spec is declaration-type-spec (letter-spec-list)13

R550 letter-spec is letter [– letter]14

C567 (R548) If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER15

statements that appear in the scoping unit and there shall be no other IMPLICIT statements16

in the scoping unit.17

C568 (R550) If the minus and second letter appear, the second letter shall follow the first letter18

alphabetically.19

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all20

of the letters in alphabetical order in the alphabetic sequence from the first letter through the second21

letter. For example, A–C is equivalent to A, B, C. The same letter shall not appear as a single letter, or22

be included in a range of letters, more than once in all of the IMPLICIT statements in a scoping unit.23

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z24

and a type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in25

its letter-spec-list. IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not26

specified for a letter, the default for a program unit or an interface body is default integer if the letter27

is I, J, ..., or N and default real otherwise, and the default for an internal or module procedure is the28

mapping in the host scoping unit.29

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic30

function, and is not made accessible by use association or host association is declared implicitly to be of31

the type (and type parameters) mapped from the first letter of its name, provided the mapping is not32

null. The mapping for the first letter of the data entity shall either have been established by a prior33

IMPLICIT statement or be the default mapping for the letter. The mapping may be to a derived type34

that is inaccessible in the local scope if the derived type is accessible in the host scope. The data entity35

is treated as if it were declared in an explicit type declaration in the outermost scoping unit in which it36

90

2006/05/11 Clause 5 rewrite results J3/06-169r1

appears. An explicit type specification in a FUNCTION statement overrides an IMPLICIT statement1

for the name of the result variable of that function subprogram.2

NOTE 5.31
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE
...
INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! All data entities need to

INTEGER JFUN, J ! be declared explicitly.
...

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB

IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
...

CONTAINS
SUBROUTINE SUB1

IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of

! type complex
Z = 1.0 ! Z is implicitly declared REAL
A = 2 ! A is implicitly declared INTEGER
CC = 1 ! CC is implicitly declared INTEGER
...

END SUBROUTINE SUB1
SUBROUTINE SUB2

Z = 2.0 ! Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

...
END SUBROUTINE SUB2
SUBROUTINE SUB3

USE EXAMPLE_MODULE ! Accesses integer function FUN
! by use association

Q = FUN (K) ! Q is implicitly declared REAL and
... ! K is implicitly declared INTEGER

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 5.32
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)

91

J3/06-169r1 Clause 5 rewrite results 2006/05/11

NOTE 5.32 (cont.)

TYPE BLOB
INTEGER :: I

END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE

CONTAINS
SUBROUTINE STEVE
INTEGER :: BLOB
..
AA = B
..

END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB
because BLOB has been given a different meaning, but implicit mapping for the letter A still maps
to type BLOB, so AA is of type BLOB.

5.6 NAMELIST statement1

A NAMELIST statement specifies a group of named data objects, which may be referred to by a2

single name for the purpose of data transfer (9.5, 10.10).3

R551 namelist-stmt is NAMELIST4

/ namelist-group-name / namelist-group-object-list5

[[,] / namelist-group-name /6

namelist-group-object-list] . . .7

C569 (R551) The namelist-group-name shall not be a name accessed by use association.8

R552 namelist-group-object is variable-name9

C570 (R552) A namelist-group-object shall not be an assumed-size array.10

C571 (R551) A namelist-group-object shall not have the PRIVATE attribute if the namelist-group-11

name has the PUBLIC attribute.12

The order in which the variables are specified in the NAMELIST statement determines the order in13

which the values appear on output.14

Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit.15

The namelist-group-object-list following each successive appearance of the same namelist-group-name in16

a scoping unit is treated as a continuation of the list for that namelist-group-name.17

A namelist group object may be a member of more than one namelist group.18

A namelist group object shall either be accessed by use or host association or shall have its type, type19

parameters, and shape specified by previous specification statements or the procedure heading in the20

same scoping unit or by the implicit typing rules in effect for the scoping unit. If a namelist group object21

is typed by the implicit typing rules, its appearance in any subsequent type declaration statement shall22

confirm the implied type and type parameters.23

92

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.33
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

5.7 Storage association of data objects1

5.7.1 EQUIVALENCE statement2

5.7.1.1 General3

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects4

in a scoping unit. This causes storage association (16.4.3) of the objects that share the storage units.5

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does6

not cause type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced,7

the scalar does not have array properties and the array does not have the properties of a scalar.8

R553 equivalence-stmt is EQUIVALENCE equivalence-set-list9

R554 equivalence-set is (equivalence-object , equivalence-object-list)10

R555 equivalence-object is variable-name11

or array-element12

or substring13

C572 (R555) An equivalence-object shall not be a designator with a base object that is a dummy14

argument, a pointer, an allocatable variable, a derived-type object that has an allocatable ulti-15

mate component, an object of a nonsequence derived type, an object of a derived type that has16

a pointer at any level of component selection, an automatic object, a function name, an entry17

name, a result name, a variable with the BIND attribute, a variable in a common block that18

has the BIND attribute, or a named constant.19

C573 (R555) An equivalence-object shall not be a designator that has more than one part-ref .20

C574 (R555) An equivalence-object shall not have the TARGET attribute.21

C575 (R555) Each subscript or substring range expression in an equivalence-object shall be an integer22

initialization expression (7.1.7).23

C576 (R554) If an equivalence-object is of type default integer, default real, double precision real,24

default complex, default logical, or numeric sequence type, all of the objects in the equivalence25

set shall be of these types.26

C577 (R554) If an equivalence-object is of type default character or character sequence type, all of the27

objects in the equivalence set shall be of these types.28

C578 (R554) If an equivalence-object is of a sequence derived type that is not a numeric sequence or29

character sequence type, all of the objects in the equivalence set shall be of the same type with30

the same type parameter values.31

C579 (R554) If an equivalence-object is of an intrinsic type other than default integer, default real,32

double precision real, default complex, default logical, or default character, all of the objects in33

the equivalence set shall be of the same type with the same kind type parameter value.34

C580 (R555) If an equivalence-object has the PROTECTED attribute, all of the objects in the equiv-35

93

J3/06-169r1 Clause 5 rewrite results 2006/05/11

alence set shall have the PROTECTED attribute.1

C581 (R555) The name of an equivalence-object shall not be a name made accessible by use association.2

C582 (R555) A substring shall not have length zero.3

NOTE 5.34
The EQUIVALENCE statement allows the equivalencing of sequence structures and the equiv-
alencing of objects of intrinsic type with nondefault type parameters, but there are strict rules
regarding the appearance of these objects in an EQUIVALENCE statement.

A structure that appears in an EQUIVALENCE statement shall be a sequence structure. If a
sequence structure is not of numeric sequence type or of character sequence type, it shall be
equivalenced only to objects of the same type with the same type parameter values.

A structure of a numeric sequence type shall be equivalenced only to another structure of a numeric
sequence type, an object of default integer type, default real type, double precision real type,
default complex type, or default logical type such that components of the structure ultimately
become associated only with objects of these types.

A structure of a character sequence type shall be equivalenced only to an object of default character
type or another structure of a character sequence type.

An object of intrinsic type with nondefault kind type parameters shall not be equivalenced to
objects of different type or kind type parameters.

Further rules on the interaction of EQUIVALENCE statements and default initialization are given
in 16.4.3.3.

5.7.1.2 Equivalence association4

An EQUIVALENCE statement specifies that the storage sequences (16.4.3.1) of the data objects specified5

in an equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set , if6

any, have the same first storage unit, and all of the zero-sized sequences in the equivalence-set , if any,7

are storage associated with one another and with the first storage unit of any nonzero-sized sequences.8

This causes the storage association of the data objects in the equivalence-set and may cause storage9

association of other data objects.10

5.7.1.3 Equivalence of default character objects11

A data object of type default character shall not be equivalenced to an object that is not of type default12

character and not of a character sequence type. The lengths of the equivalenced character objects need13

not be the same.14

An EQUIVALENCE statement specifies that the storage sequences of all the default character data15

objects specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the16

equivalence-set , if any, have the same first character storage unit, and all of the zero-sized sequences in17

the equivalence-set , if any, are storage associated with one another and with the first character storage18

unit of any nonzero-sized sequences. This causes the storage association of the data objects in the19

equivalence-set and may cause storage association of other data objects.20

NOTE 5.35
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)

94

2006/05/11 Clause 5 rewrite results J3/06-169r1

NOTE 5.35 (cont.)

EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

1 2 3 4 5 6 7
|--- --- A --- ---|

|--- --- B --- ---|
|--- C(1) ---| |--- C(2) ---|

5.7.1.4 Array names and array element designators1

For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-2

object has the same effect as using an array element designator that identifies the first element of the3

array.4

5.7.1.5 Restrictions on EQUIVALENCE statements5

An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once6

in a storage sequence.7

NOTE 5.36
For example:

REAL, DIMENSION (2) :: A
REAL :: B
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard conforming

is prohibited, because it would specify the same storage unit for A (1) and A (2).

An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.8

NOTE 5.37
For example, the following is prohibited:

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard conforming

5.7.2 COMMON statement9

5.7.2.1 General10

The COMMON statement specifies blocks of physical storage, called common blocks, that can be11

accessed by any of the scoping units in a program. Thus, the COMMON statement provides a global12

data facility based on storage association (16.4.3).13

The common blocks specified by the COMMON statement may be named and are called named com-14

mon blocks, or may be unnamed and are called blank common.15

R556 common-stmt is COMMON16

[/ [common-block-name] /] common-block-object-list17

[[,] / [common-block-name] /18

95

J3/06-169r1 Clause 5 rewrite results 2006/05/11

common-block-object-list] ...1

R557 common-block-object is variable-name [(array-spec)]2

or proc-pointer-name3

C583 (R557) An array-spec in a common-block-object shall be an explicit-shape-spec-list.4

C584 (R557) Only one appearance of a given variable-name or proc-pointer-name is permitted in all5

common-block-object-lists within a scoping unit.6

C585 (R557) A common-block-object shall not be a dummy argument, an allocatable variable, a7

derived-type object with an ultimate component that is allocatable, an automatic object, a8

function name, an entry name, a variable with the BIND attribute, or a result name.9

C586 (R557) If a common-block-object is of a derived type, it shall be a sequence type (4.5.2) or a10

type with the BIND attribute and it shall have no default initialization.11

C587 (R557) A variable-name or proc-pointer-name shall not be a name made accessible by use12

association.13

In each COMMON statement, the data objects whose names appear in a common block object list14

following a common block name are declared to be in that common block. If the first common block15

name is omitted, all data objects whose names appear in the first common block object list are specified to16

be in blank common. Alternatively, the appearance of two slashes with no common block name between17

them declares the data objects whose names appear in the common block object list that follows to be18

in blank common.19

Any common block name or an omitted common block name for blank common may occur more than20

once in one or more COMMON statements in a scoping unit. The common block list following each21

successive appearance of the same common block name in a scoping unit is treated as a continuation of22

the list for that common block name. Similarly, each blank common block object list in a scoping unit23

is treated as a continuation of blank common.24

The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.25

If derived-type objects of numeric sequence type (4.5.2) or character sequence type (4.5.2) appear in26

common, it is as if the individual components were enumerated directly in the common list.27

NOTE 5.38
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K

5.7.2.2 Common block storage sequence28

For each common block in a scoping unit, a common block storage sequence is formed as follows:29

(1) A storage sequence is formed consisting of the sequence of storage units in the storage30

sequences (16.4.3.1) of all data objects in the common block object lists for the common31

block. The order of the storage sequences is the same as the order of the appearance of the32

common block object lists in the scoping unit.33

(2) The storage sequence formed in (1) is extended to include all storage units of any storage34

sequence associated with it by equivalence association. The sequence shall be extended only35

by adding storage units beyond the last storage unit. Data objects associated with an entity36

in a common block are considered to be in that common block.37

96

2006/05/11 Clause 5 rewrite results J3/06-169r1

Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute1

to common block storage sequences formed in that scoping unit.2

5.7.2.3 Size of a common block3

The size of a common block is the size of its common block storage sequence, including any extensions4

of the sequence resulting from equivalence association.5

5.7.2.4 Common association6

Within a program, the common block storage sequences of all nonzero-sized common blocks with the7

same name have the same first storage unit, and the common block storage sequences of all zero-sized8

common blocks with the same name are storage associated with one another. Within a program, the9

common block storage sequences of all nonzero-sized blank common blocks have the same first storage10

unit and the storage sequences of all zero-sized blank common blocks are associated with one another and11

with the first storage unit of any nonzero-sized blank common blocks. This results in the association of12

objects in different scoping units. Use association or host association may cause these associated objects13

to be accessible in the same scoping unit.14

A nonpointer object of default integer type, default real type, double precision real type, default complex15

type, default logical type, or numeric sequence type shall be associated only with nonpointer objects of16

these types.17

A nonpointer object of type default character or character sequence type shall be associated only with18

nonpointer objects of these types.19

A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall20

be associated only with nonpointer objects of the same type with the same type parameter values.21

A nonpointer object of intrinsic type other than default integer, default real, double precision real,22

default complex, default logical, or default character shall be associated only with nonpointer objects of23

the same type and type parameters.24

A data pointer shall be storage associated only with data pointers of the same type and rank. Data25

pointers that are storage associated shall have deferred the same type parameters; corresponding non-26

deferred type parameters shall have the same value. A procedure pointer shall be storage associated27

only with another procedure pointer; either both interfaces shall be explicit or both interfaces shall be28

implicit. If the interfaces are explicit, the characteristics shall be the same. If the interfaces are implicit,29

either both shall be subroutines or both shall be functions with the same type and type parameters.30

An object with the TARGET attribute shall be storage associated only with another object that has31

the TARGET attribute and the same type and type parameters.32

NOTE 5.39
A common block is permitted to contain sequences of different storage units, provided each scoping
unit that accesses the common block specifies an identical sequence of storage units for the common
block. For example, this allows a single common block to contain both numeric and character
storage units.

Association in different scoping units between objects of default type, objects of double precision
real type, and sequence structures is permitted according to the rules for equivalence objects
(5.7.1).

97

J3/06-169r1 Clause 5 rewrite results 2006/05/11

5.7.2.5 Differences between named common and blank common1

A blank common block has the same properties as a named common block, except for the following.2

(1) Execution of a RETURN or END statement may cause data objects in a named common3

block to become undefined unless the common block has the SAVE attribute, but never4

causes data objects in blank common to become undefined (16.5.6).5

(2) Named common blocks of the same name shall be of the same size in all scoping units of a6

program in which they appear, but blank common blocks may be of different sizes.7

(3) A data object in a named common block may be initially defined by means of a DATA8

statement or type declaration statement in a block data program unit (11.3), but objects in9

blank common shall not be initially defined.10

5.7.3 Restrictions on common and equivalence11

An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to12

be associated.13

Equivalence association shall not cause a derived-type object with default initialization to be associated14

with an object in a common block.15

Equivalence association shall not cause a common block storage sequence to be extended by adding16

storage units preceding the first storage unit of the first object specified in a COMMON statement for17

the common block.18

NOTE 5.40
For example, the following is not permitted:

COMMON /X/ A
REAL B (2)
EQUIVALENCE (A, B (2)) ! Not standard conforming

98

