
16 May 2006 J3/06-187

Subject: Integration (feature creep?): fleshing out DO CONCURRENT functionality
From: Van Snyder

1 Introduction1

Co-arrays are a good solution for some, but not all, classes of parallel programming problems: many2

problems do not have the sort of regular SPMD parallel structure to which co-arrays are most applica-3

ble. Rather, they have irregular sorts of parallelism that are more suited to the DO CONCURRENT4

construct, or a PARALLEL construct.5

To exploit optimally a DO CONCURRENT construct with limits given by initialization expressions,6

in which the body is a case selector that selects according to the induction variable of the construct, a7

processor must do exactly the same calculations as would be necessary to exploit a PARALLEL construct8

optimally. A PARALLEL construct might thereby be dismissed as “mere syntax sugar,” but syntax sugar9

reduces both development cost and ongoing maintenance cost, so it should not be dismissed.10

To admit aggressive optimizations, substantial restrictions are placed upon the body of a DO CONCUR-11

RENT construct that may be undesirable to impose upon a PARALLEL construct.12

The restriction that procedures executed from within a DO CONCURRENT construct shall be pure13

procedures could be relaxed if the CRITICAL construct were suitably extended.14

2 Proposals15

2.1 A PARALLEL construct16

Provide a PARALLEL construct, having at least the functionality that can be gotten more verbosely and17

more cryptically (therefore with more fragility and more ongoing maintenance expense) by embedding18

a SELECT CASE construct within a DO CONCURRENT construct, e.g.,19

PARALLEL DO CONCURRENT I = 1, N
SELECT CASE (I)

FORK CASE (1)
block block

FORK CASE (2)
block block

... ...
END SELECT

END PARALLEL END DO CONCURRENT

where each block in either construct can be executed concurrently with another one, or in any order20

with respect to another one. Indeed, a processor may ignore the parallel aspects of the PARALLEL21

construct. The construct itself cannot be ignored because an EXIT statement may belong to it. This,22

however, amounts to treating it very much like a BLOCK construct.23

2.2 Exclusive access to shared variables24

To provide for exclusive access to shared variables, generalize the CRITICAL construct to provide that25

the execution sequence of a single iteration of a DO CONCURRENT construct cannot enter it if one26

is already executing it. This would allow CRITICAL constructs to invoke impure procedures. This27

doesn’t work for PARALLEL constructs, however: While different iterations of a DO CONCURRENT28

construct might encounter the same textual CRITICAL construct, different forks of a PARALLEL29

construct of necessity would not. The desired effect — exclusive access to shared variables — can30

be simulated by putting the CRITICAL construct into a procedure. The VALUE attribute must be31

implemented differently (more complicated, more expensive) from the obvious way to make it thread32

safe. If executable per-invocation initializations are someday provided, procedures exploiting them also33

would not be thread safe. The reason in both cases is that the specification part necessarily would not be34

16 May 2006 Page 1 of 5

16 May 2006 J3/06-187

within a CRITICAL construct. Therefore, it would be useful to have a MONITOR prefix for a procedure.35

It would furthermore be useful in connection with co-arrays. For lighter-weight synchronization, it would36

be useful to have a LOCK construct based upon an object of SEMAPHORE type, that type being defined37

in the ISO FORTRAN ENV intrinsic module.38

2.3 Iteration-private and thread-private variables39

DO CONCURRENT constructs would benefit from iteration-private variables, and blocks in a FORK40

construct would benefit from thread-private variables. To cater for this, allow declarations in DO41

CONCURRENT constructs, and in each FORK of a PARALLEL construct. This proliferation of special42

cases suggests it would be easier, both for processors and for the standard, simply to allow a specification-43

part in every block . An entity declared in the specification-part of a block would have a scope of the block .44

Allow the induction variable of a DO or DO CONCURRENT construct to be preceded by INTEGER45

[(kind-selector)] ::, having the effect of giving the induction variable construct scope, and allow it before46

an index variable in a FORALL construct or statement for documentary purposes, to specify the type47

of the index variable if it would not have integer type in the containing scope, or to specify its kind.48

3 Edits49

Edits refer to 06-007. Page and line numbers are displayed in the margin. Absent other instructions, a50

page and line number or line number range implies all of the indicated text is to be replaced by associated51

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after52

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.53

or parallel-construct 11:11+54

15:22+55

(3a) Exection of a PARALLEL construct divides the execution sequence into a number of exe-56

cution sequences that does not exceed the number of FORK blocks of the construct. Each57

such execution sequence proceeds independently through one or more different FORK blocks58

of the PARALLEL construct until each FORK block of the construct has been executed59

exactly once, at which instant they are recombined into a single execution sequence.60

(3b) Exection of a DO CONCURRENT construct divides the execution sequence into a number61

of execution sequences that does not exceed the iteration count of the construct. Each62

such execution sequence proceeds independently through the block of one or more different63

iterations of the construct until every iteration of the construct has been executed exactly64

once, at which instant they are recombined into a single execution sequence.65

[Editor: Insert “END LOCK” into the table in alphabetical order.] 30:2+66

[Editor: Insert “END PARALLEL” into the table in alphabetical order.]67

R754 forall-header is ([INTEGER [kind-selector] ::] forall-triplet-spec-list 168:3368

[, scalar-mask-expr])69

R801 block is [declaration-construct] . . . 175:1470

[execution-part-construct] . . .71

C800a (R801) The declaration-construct shall not be an entry-stmt .72

8.1.4a PARALLEL construct 180:1-73

The PARALLEL construct divides the execution sequence into a number of execution sequences that74

does not exceed the number of FORK blocks within the construct. Each such execution sequence75

independently executes one or more different fork-blocks of the construct. These independent execution76

sequences recombine into a single execution sequence when each fork-block has been executed exactly77

once.78

R815.1 parallel-construct is parallel-stmt79

fork-block80

[fork-block] . . .81

16 May 2006 Page 2 of 5

16 May 2006 J3/06-187

end-parallel-stmt82

R815.2 parallel-stmt is [parallel-construct-name :] PARALLEL83

R815.3 fork-block is FORK [parallel-construct-name]84

block85

C807.1 (R815.3) A fork-block shall not contain an EXIT or CYCLE statement that belongs to a con-86

struct that contains the parallel construct.87

C807.2 (R815.3) A branch (8.2) within a fork-block shall not have a branch target that is outside the88

parallel-construct .89

C807.3 (R815.3) A procedure referenced within a fork-block shall be a pure procedure or a monitor90

procedure, or shall be executed from within the range of a CRITICAL construct or a LOCK91

construct.92

R815.4 end-parallel-stmt is END PARALLEL [parallel-construct-name]93

C807.4 (R815.1) If the parallel-stmt of a parallel-construct specifies a parallel-construct-name, the corre-94

sponding end-parallel-stmt shall specify the same parallel-construct-name. If the parallel-stmt of95

a parallel-construct does not specify a parallel-construct-name, the corresponding end-parallel-96

stmt shall not specify a parallel-construct-name. If a fork-stmt specifies a parallel-construct-97

name, the corresponding parallel-stmt shall specify the same parallel-construct-name.98

NOTE 8.9a
A processor is not required to execute the individual FORK blocks of a parallel construct con-
currently. Other than verifying their syntax and constraints, a processor could simply ignore the
FORK statements, with the effect that the FORK blocks are executed in the order they appear.

8.1.3a LOCK construct99

A LOCK construct permits an execution sequence to enter it if its lock variable has a lock status of100

unlocked, and does not permit the execution sequence to enter if the lock variable has a lock status of101

locked. When an execution sequence enters a LOCK construct, the lock status of its lock variable becomes102

locked. When an execution sequence completes execution of a lock construct, the lock status of its lock103

variable becomes unlocked. An execution sequence that is prevented from entering is not terminated;104

its entry is simply delayed until the execution sequence that is executing the LOCK construct completes105

execution of it. If several execution sequences simultaneously attempt to enter a LOCK construct,106

exactly one of them enters it; which one enters it is processor dependent. If several execution sequences107

attempt to enter a LOCK construct while another execution sequence is executing it, which one proceeds108

when the execution sequence that is executing it completes executing it is processor dependent.109

A LOCK construct completes execution when the END LOCK statement is executed, when control110

is transferred by a branch within the construct to a branch target outside of the construct, when an111

EXIT statement that belongs to the construct or one that contains the construct is executed, or when112

a CYCLE statement that belongs to a construct that contains the construct is executed.113

[Alternatively, a LOCK construct shall be terminated only by execution of the END LOCK statement114

or an EXIT statement that belongs to the construct.]115

R815.5 lock-construct is lock-stmt116

block117

end-lock-stmt118

R815.6 lock-stmt is [lock-construct-name :] LOCK lock-variable119

R815.7 lock-variable is scalar-variable120

C807.4 (R815.7) The type of the lock-variable shall be the derived type SEMAPHORE defined in the121

ISO FORTRAN ENV intrinsic module. The lock variable shall not have the ALLOCATABLE122

or POINTER attribute, and shall not be a subcomponent of an object that has the ALLOCAT-123

ABLE or POINTER attribute..124

16 May 2006 Page 3 of 5

16 May 2006 J3/06-187

R815.8 end-lock-stmt is END LOCK [lock-construct-name]125

C807.5 (R815.5) If the lock-stmt of a lock-construct specifies a lock-construct-name, the corresponding126

end-lock-stmt shall specify the same lock-construct-name. If the lock-stmt of a lock-construct127

does not specify a lock-construct-name, the corresponding end-lock-stmt shall not specify a128

lock-construct-name.129

C809a (R816) An associate-name shall not be an object-name in a type-declaration-stmt in the block , 181:6+130

and shall not appear in any other declaration-construct in the block except as an object-name131

in an ALLOCATABLE, ASYNCHRONOUS, POINTER, TARGET, or VOLATILE statement.132

[Editor: replace “Within . . . the attribute.” by “Within the block of an ASSOCIATE construct or any 181:21-27133

block of a SELECT TYPE construct, an associating entity has the ASYNCHRONOUS or VOLATILE134

attribute if the selector is a variable that has the attribute or if the selector is a variable and the135

associating entity is specified to have the attribute by an attribute specification statement within the136

construct. An associating entity has the TARGET attribute if the selector is a variable and has either137

the TARGET or POINTER attribute or is specified to have the TARGET attribute by an attribute138

specification statement within the construct. An associating entity may be specified by an attribute139

specification statement to have the ALLOCATABLE or POINTER attribute only if the selector is a140

variable and has that attribute. If the selector is allocatable and the associating entity is not, the141

selector shall be allocated. If the selector is a pointer and the associating entity is not, the selector142

shall be associated with a target and the associating entity becomes associated with that target. Each143

associating entity has the same rank as the associated selector. If the associating entity is neither144

allocatable nor a pointer, or is an allocated allocatable or an associated pointer, the lower bound of each145

dimension is the result of the LBOUND function (13.7.97) applied to the corresponding dimension of146

selector , and the upper bound is one less than the sum of the lower bound and the extent”.]147

C813a (R816) An associate name shall not be an object-name in a type-declaration-stmt in the block , 182:15+148

and shall not appear in any other declaration-construct in the block except as an object-name149

in an ALLOCATABLE, ASYNCHRONOUS, POINTER, TARGET, or VOLATILE statement.150

R831 do-variable is [INTEGER [kind-selector] ::] scalar-int-variable 185:30151

When a DO CONCURRENT statement is executed, a separate instance of the block of the DO CON- 187:20+ New ¶152

CURRENT construct is created for each iteration, and the execution sequence that executes the DO153

CONCURRENT statement is divided into a number of execution sequences that does not exceed the154

iteration count. Each instance has an independent set of local unsaved data objects. Each execution155

sequence independently executes one or more different instances of the block in such a way that each156

instance is executed once. Each instance ceases to exist when execution of its iteration of the DO157

CONCURRENT construct completes or execution of the program is terminated. If the program is not158

terminated, completion of execution of the DO CONCURRENT construct recombines the execution159

sequences into a single execution sequence.160

[Make the first sentence of the paragraph, the one that begins “The processor shall ensure. . . ”, a sep- 192:15-19+161

arate paragraph, and replace the three instances of “image” in it by “execution sequence”. Within the162

remainder of the paragraph, replace “image” by “execution sequence”. Within NOTE 8.23 replace the163

first three instances of “image” in it by “execution sequence”.]164

or MONITOR 320:29+165

C1246a (R1229) If MONITOR appears, neither ELEMENTAL nor RECURSIVE shall appear. 326:34+166

12.8 Monitor procedures 337:13+167

A monitor procedure is a procedure that is defined by a subprogram for which MONITOR appears168

in the prefix of the initial subroutine statement or function statement. It does not allow an execution169

sequence to enter it if one has entered it but not completed execution of it. The execution sequence that is170

prevented from entering is not terminated; its entry is simply delayed until the execution sequence that is171

executing the monitor procedure completes execution of it. If several execution sequences simultaneously172

attempt to enter a monitor procedure, exactly one of them enters it and the others are delayed; which173

16 May 2006 Page 4 of 5

16 May 2006 J3/06-187

one enters it is processor dependent. If several execution sequences attempt to enter a monitor procedure174

while another execution sequence is executing it, which one proceeds when the execution sequence that175

is executing it completes executing it is processor dependent.176

[Editor: Replace “derived type” by “derived-type definitions”.] 437:30177

13.8.3.5a The SEMAPHORE derived type 439:1+178

The type of a lock-variable in a LOCK construct (8.1.3a) shall be the SEMAPHORE derived type. The179

SEMAPHORE derived type has private components, at least one of which has default initialization that180

indicates that the initial lock status of objects of SEMAPHORE derived type is unlocked.181

16.4 Statement, construct and block entities 491:24182

[Editor: Replace “or” by comma. After “ASSOCIATE construct” insert “, or a do-variable that follows 491:28-29183

INTEGER[kind-selector] :: in a DO construct”.]184

An entity that is declared or defined by a declaration-construct in a block is a block entity that has a 491:41+ New ¶185

scope of that block .186

If a global or local identifier accessible within the scope of a block is the same as the identifier of a block 492:31+187

entity of the block, the identifier is interpreted within the block as that of the block entity. Elsewhere188

in the scoping unit the identifier is interpreted as the global or local identifier.189

16 May 2006 Page 5 of 5

	Introduction
	Proposals
	A PARALLEL construct
	Exclusive access to shared variables
	Iteration-private and thread-private variables

	Edits

