
16 May 2006 J3/06-189

Subject: Are critical sections good enough?
From: Van Snyder

1 Introduction1

If one wants to provide that one image has exclusive access to a variable, no matter from where it is2

referenced, one cannot simply use a CRITICAL construct, because it is the textual critical construct that3

limits execution to a single image. One might be tempted to put the critical construct into a procedure,4

and use the procedure to access the shared variable therein, but the construction of VALUE dummy5

arguments, and elaboration of the specification part, are not within the critical section.6

2 Proposals7

2.1 MONITOR procedures8

Were it not for VALUE arguments and the generality of specification parts, a MONITOR procedure9

could be constructed, at the cost of some verbosity, by wrapping the execution-part in a CRITICAL10

construct. But the construction of VALUE dummy arguments, and elaboration of the specification part,11

cannot be within the critical section.12

Monitor procedures should be allowed to be executed from within DO CONCURRENT loops.13

2.2 LOCK construct14

A CRITICAL construct is a lighter weight exclusion mechanism than a MONITOR procedure, but15

critical sections provide exclusion by their textual position. In addition to a MONITOR procedure,16

it would be desirable to have a lightweight mechanism that can exclude access based upon a binary17

semaphore, no matter where (textually) the exclusion is requested.18

3 Edits19

Edits refer to 06-007. Page and line numbers are displayed in the margin. Absent other instructions, a20

page and line number or line number range implies all of the indicated text is to be replaced by associated21

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after22

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.23

3.1 Laying the groundwork concerning the DO CONCURRENT construct24

(3b) Exection of a DO CONCURRENT construct divides the execution sequence into a number 15:22+25

of execution sequences that does not exceed the iteration count of the construct. Each26

such execution sequence proceeds independently through the block of one or more different27

iterations of the construct until every iteration of the construct has been executed exactly28

once, at which instant they are recombined into a single execution sequence.29

When a DO CONCURRENT statement is executed, a separate instance of the block of the DO CON- 187:20+ New ¶30

CURRENT construct is created for each iteration, and the execution sequence that executes the DO31

CONCURRENT statement is divided into a number of execution sequences that does not exceed the32

iteration count. Each instance has an independent set of local unsaved data objects. Each execution33

sequence independently executes one or more different instances of the block in such a way that each34

instance is executed once. Each instance ceases to exist when execution of its iteration of the DO35

CONCURRENT construct completes or execution of the program is terminated. If the program is not36

terminated, completion of execution of the DO CONCURRENT construct recombines the execution37

sequences into a single execution sequence.38

[Make the first sentence of the paragraph, the one that begins “The processor shall ensure. . . ”, a sep- 192:15-19+39

arate paragraph, and replace the three instances of “image” in it by “execution sequence”. Within the40

remainder of the paragraph, replace “image” by “execution sequence”. Within NOTE 8.23 replace the41

first three instances of “image” in it by “execution sequence”.]42

16 May 2006 Page 1 of 3

16 May 2006 J3/06-189

3.2 MONITOR procedures43

[Editor: Replace “PURE” by “PURE or MONITOR procedures”.] 189:2844

or MONITOR 326:29+45

C1246a (R1229) If MONITOR appears, neither ELEMENTAL nor RECURSIVE shall appear. 326:34+46

12.8 Monitor procedures 337:13+47

A monitor procedure is a procedure that does not allow an execution sequence to enter it if one has48

entered it but not completed execution of it. It is defined by a subprogram for which MONITOR appears49

in the prefix of the initial subroutine statement or function statement. The execution sequence that is50

prevented from entering is not terminated; its entry is simply delayed until the execution sequence that is51

executing the monitor procedure completes execution of it. If several execution sequences simultaneously52

attempt to enter a monitor procedure, exactly one of them enters it and the others are delayed; which53

one enters it is processor dependent. If several execution sequences attempt to enter a monitor procedure54

while another execution sequence is executing it, which one proceeds when the execution sequence that55

is executing it completes executing it is processor dependent.56

3.3 LOCK construct57

[Editor: Insert “END LOCK” into the table in alphabetical order.] 30:2+58

8.1.3a LOCK construct 180:1-59

A LOCK construct permits an execution sequence to enter it if its lock variable has a lock status60

of unlocked, and does not permit the execution sequence to enter if its lock variable has a lock status61

of locked. When an execution sequence enters a LOCK construct, the lock status of its lock variable62

becomes locked. When an execution sequence completes execution of a LOCK construct, the lock63

status of its lock variable becomes unlocked. An execution sequence that is prevented from entering is64

not terminated; its entry is simply delayed until the execution sequence that is executing the LOCK65

construct completes execution of it. If several execution sequences simultaneously attempt to enter a66

LOCK construct, exactly one of them enters it; which one enters it is processor dependent. If several67

execution sequences attempt to enter a LOCK construct while another execution sequence is executing it,68

which one proceeds when the execution sequence that is executing it completes executing it is processor69

dependent.70

A LOCK construct completes execution when the END LOCK statement is executed, when control is71

transferred by a branch within the construct to a branch target outside of the construct, when an EXIT72

statement that belongs to the construct or one that contains it is executed, or when a CYCLE statement73

that belongs to a construct that contains the LOCK construct is executed.74

[Alternatively, a LOCK construct shall be terminated only by execution of the END LOCK statement75

or an EXIT statement that belongs to the construct.]76

R815a lock-construct is lock-stmt77

block78

end-lock-stmt79

R815b lock-stmt is [lock-construct-name :] LOCK lock-variable80

R815c lock-variable is scalar-variable81

C807a (R815b) The type of the lock-variable shall be the derived type SEMAPHORE defined in the82

ISO FORTRAN ENV intrinsic module.83

R815d end-lock-stmt is END LOCK [lock-construct-name]84

C807b (R815a) If the lock-stmt of a lock-construct specifies a lock-construct-name, the corresponding85

end-lock-stmt shall specify the same lock-construct-name. If the lock-stmt of a lock-construct86

does not specify a lock-construct-name, the corresponding end-lock-stmt shall not specify a87

lock-construct-name.88

C807c (R815c) The type of the lock-variable shall be the derived type SEMAPHORE defined in the89

ISO FORTRAN ENV intrinsic module. The lock variable shall not have the ALLOCATABLE90

16 May 2006 Page 2 of 3

16 May 2006 J3/06-189

or POINTER attribute, and shall not be a subcomponent of an object that has the ALLOCAT-91

ABLE or POINTER attribute.]92

[Editor: “derived type” ⇒ “derived-type definitions”.] 437:3093

13.8.3.5a The SEMAPHORE derived type 439:1-94

The type of a lock-variable in a LOCK construct (8.1.3a) shall be the SEMAPHORE derived type. The95

SEMAPHORE derived type has private components, at least one of which has default initialization that96

indicates that the initial lock status of objects of SEMAPHORE derived type is unlocked.97

16 May 2006 Page 3 of 3

	Introduction
	Proposals
	MONITOR procedures
	LOCK construct

	Edits
	Laying the groundwork concerning the DO CONCURRENT construct
	MONITOR procedures
	LOCK construct

