
24 July 2006 J3/J3/06-193

Subject: Comments on Clause 12
From: Van Snyder

1 Edits — and comments without editorial suggestions1

Edits refer to 06-007. Page and line numbers are displayed in the margin. Absent other instructions, a2

page and line number or line number range implies all of the indicated text is to be replaced by associated3

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after4

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.5

[Editor: “or” ⇒ comma, insert “, the appearance of an object processed by user-defined derived-type 297:21-226

input/output (9.5.3.7) in an input/output list, or finalization (4.5.6)” at the end of the sentence.]7

[Wouldn’t it be clearer if internal subprograms were constrained against appearing within internal sub- 297:34-298:18

programs at [11:51+]?]9

[Internal subprograms are now allowed to be actual arguments. Editor: Delete “, the internal procedure 298:3-410

name shall not be argument associated with a dummy procedure (12.5.1.6)”.]11

[Editor: Add an item to the list:] 300:1-412

(z) because an object processed by user-defined derived-type input/output (9.5.3.7) appears in an13

input/output list,14

[It seems that the only reason an interface body can specify that the procedure is not pure is if the 302:2515

procedure itself is defined to be pure. Editor: Insert “even” before “if”.]16

[Editor: For consistency with [302:12-14] “An explicit . . . way” ⇒ “If an external procedure does not 302:27-2917

exist in the program, an interface body for it may be used to specify an explicit specific interface but18

the procedure shall not be used in any other way”.]19

[The note seems to say that dummy arguments specified in a procedure definition or an interface body 302:30+220

might be the same as other dummy arguments in the same definition or interface body. Editor: “may21

be different” ⇒ “in an interface body may be different from the corresponding dummy argument names22

in the procedure definition”.]23

[Subclause 16.3.4 doesn’t have anything to do with scope of local identifiers, which is the topic of 304:14+24

Subclause 16.3. It more logically belongs here anyway. Editor: Move Subclause 16.3.4 here. Do we25

thereby need to convert some of the ordinary normative text in it to constraints?]26

[What’s the point of the “nonoptional” restriction? It just prevents a class of defined-assignment routines 305:13-1427

to be used for other purposes. Editor: “arguments. . . . nonoptional” ⇒ arguments that are”.]28

[“the right-hand side enclosed in parentheses” could, if taken literally, cause two copies if the second 305:15,18,1929

argument has the VALUE attribute. VALUE doesn’t preclude INTENT(IN), and there’s nothing here30

that precludes VALUE. Editor: “INTENT(IN)” ⇒ “the INTENT(IN) or VALUE attribute”, insert31

“actual” between “first” and “argument”, “enclosed . . . second”⇒ “, enclosed in parenthses if the second32

dummy argument does not have the VALUE attribute, as the second actual”.]33

[Editor: Newline needed between R1215 and R1216.] 307:1034

[Editor: “initial-proc-target” ⇒ “initial-proc-target”.] 307:1135

[Editor: “initialization target” ⇒ “initialization target”. \tdef will add it to the index, which is 307:4436

needed, since the only one there refers to [65:26] and has to do only with variables.]37

[Feature creep: Editor: “or module” ⇒ “module, or internal”, insert “If the initialization target is an 307:44-308:138

internal procedure, it shall be an internal procedure of the main program.” at the end of the paragraph.]39

[Editor: Would be clearer at [308:5+].] 308:9-1040

24 July 2006 Page 1 of 4

24 July 2006 J3/J3/06-193

[Editor: Insert “, by the appearance of an object processed by user-defined derived-type input/output 310:141

(9.5.3.7) in an input/output list, or by finalization (4.5.6)” at the end of the sentence.]42

[At [311:13-16] one can conclude that no more than one actual argument can correspond to a dummy 317:5+243

argument. Editor: “actual arguments that correspond” ⇒ “an actual argument that corresponds”.]44

[Doesn’t work for optional dummy arguments that don’t correspond to actual arguments. Editor: “actual 318:2045

. . . or” ⇒ “associated actual argument shall be a function, or the corresponding actual argument, if any,46

shall be a”.]47

[Doesn’t work for optional dummy arguments that don’t correspond to actual arguments. Editor: “actual 318:2248

. . . or” ⇒ “associated actual argument shall be a subroutine, or the corresponding actual argument, if49

any, shall be a”.]50

[Editor: “associated . . . argument” ⇒ “present”.] 319:4051

[I can’t find the normative justification for the “but not both” part, at least not within the list in which 321:0+552

Note 12.32 is embedded, not least because the actual argument has the POINTER attribute, while the53

list refers to allocation status (which only applies to allocatable variables).]54

[Editor: Insert “of” after “value”.] 321:455

[Editor: Delete “or”, insert “, or finalization” after “item”.] 322:16-1756

[Editor: For consistency with 8.2 and the discussion of termination of execution of constructs “control 322:1857

may be transfered” ⇒ “a branch may occur”, “statements” ⇒ “branch targets”.]58

[Editor: for consistency with [323:11], delete second “if”.] 323:2159

[Editor: Simplify the paragraph by replacing it:] 327:28-3260

The prefix-spec RECURSIVE shall appear if any function defined by the subprogram directly or indirectly61

invokes any function defined by the subprogram.62

NOTE 12.40a
Each ENTRY statement in the subprogram defines an additional function.

[But don’t do both this and section 2 below.]63

[Simplify. Editor: “, the pointer . . . disassociated” ⇒ “its pointer association status shall not be unde- 327:41-4264

fined”.]65

[Editor: Simplify the paragraph by replacing it:] 329:19-2366

The prefix-spec RECURSIVE shall appear if any subroutine defined by the subprogram directly or67

indirectly invokes any subroutine defined by the subprogram.68

NOTE 12.40a
Each ENTRY statement in the subprogram defines an additional subroutine.

[But don’t do both this and section 2 below.]69

[Editor: “function or subroutine” ⇒ “procedure”.] 329:2970

Each instance ceases to exist when execution of the invocation that created the instance completes 329:38+ New ¶71

exection, or execution of the program is terminated.72

[Editor: “keyword” ⇒ “prefix” twice.] 330:3-473

[“Is accessible” is sometimes interpreted to mean “is available by use or host association.” Editor: “is 330:22+274

only accessible by use association” ⇒ “can be accessed by use association only”.]75

[There is no point to constrain an entry-stmt against appearing within an executable-construct , since the 331:1-276

24 July 2006 Page 2 of 4

24 July 2006 J3/J3/06-193

syntax doesn’t admit it. Editor: delete “An entry-stmt shall not appear within an executable-construct .”77

(or replace “shall” by “cannot” and make the sentence a note).]78

[We usually use “executable construct” instead of “executable statement”. Editor: “statement” ⇒ 331:31,33-3579

“construct”. An ASSOCIATE statement is executable. Can the name of a dummy argument in an80

ENTRY statement appear as the associate-name in a prior ASSOCIATE statement? It ought to be81

allowed, since the construct-name is the name of a construct entity. Editor: Insert “it is the name of82

a statement or construct entity (16.4), or it” after “unless”. Does this need to get into a Fortran 200383

corrigendum? Editor: Insert “as a dummy argument name” after “appears”.]84

[Editor: Replace [331:33-35] by the following note:85

NOTE 12.45a
If a prior statement or construct entity has the same name as a dummy argument in an ENTRY
statement, and its type and type parameters are determined by the scoping unit in which it
appears, it will either be implicitly typed or it will necessarily appear as a dummy argument in a
prior SUBROUTINE, FUNCTION or ENTRY statement.

[Editor: Insert “or another procedure defined by the subprogram” after “itself”.] 332:686

[Editor: Insert “of the procedure name referenced” after “list”. For consistency with 8.2 and the discussion 332:19-2187

of termination of execution of constructs “transfers control“ ⇒ “branches”, insert “of the procedure name88

referenced when the RETURN statement is executed” after “specifier in the argument list”, “transfer of control” ⇒89

“branch”.]90

[Editor: Either delete “an” or insert “function” after the first “intrinsic”, insert “function” after the second 333:791

“intrinsic”.]92

[Editor: “the entity” ⇒ “an entity”, insert “, or has type and type parameters determined by the implicit typing rules 333:2493

in effect in that scoping unit” after “function”.]94

[Editor: “attributes” ⇒ “parameters”.] 333:2895

[Wouldn’t it be simpler to say “a pure intrinsic procdure”? Compare to [335:12]. If it works there, why 333:33-3496

not here?]97

[Editor: Insert “, or within the specification-part of a BLOCK construct within a pure subprogram,” 334:798

before “shall”. In light of C1281, delete “or internal-subprogram-part”.]99

[Why is there a page break here? There’s no \newpage in sight.] 334:25+3+100

[Editor: “assignment” ⇒ “defined assignment , user-defined derived-type input/output”. Yes, DTIO 335:2101

can happen, so long as the unit is an internal file.]102

[Could this be folded into C1282?] 335:8103

[Repairing the note to account for IMPURE would result in it saying “the constraints on pure procedures 336:8+1-3104

apply to pure procedures.” Editor: Delete Note 12.51.]105

2 Reorganization of “Procedures defined by subprogams”106

Subclause 12.6.2 Procedures defined by subprograms repeats material from suclauses 2.3.4 and 12.6.2.3107

(which it cites), so it’s not needed. On the other hand, this is a good place to collect the material about108

the prefix .109

One or more procedures are defined by each subprogram. In addition to the procedure entry point 325:32-34110

defined by the initial SUBROUTINE or FUNCTION statement, an additional procedure entry point is111

defined by each ENTRY statement (12.6.2.5).112

A procedure is specified to be elemental (12.8), pure (12.7), recursive, or a separate module procedure113

(12.6.2.4) by a prefix of its initial SUBROUTINE or FUNCTION statement.114

24 July 2006 Page 3 of 4

24 July 2006 J3/J3/06-193

[Editor: Move [326:25-327:10] to here.]115

The prefix-spec RECURSIVE shall appear if any procedure defined by the subprogram directly or indi-116

rectly invokes itself or any other procedure defined by the subprogram.117

[Editor: Move [328:1-4] to here.]118

[Editor: Delete [327:28-32] and [329:19-27].]119

24 July 2006 Page 4 of 4

	Edits --- and comments without editorial suggestions
	Reorganization of ``Procedures defined by subprogams''

