g~ WON =

[=)]

10

11
12
13

14
15
16
17

18
19
20

21

22
23

24
25

26
27
28

29
30

31
32

33

34

35

36

37

38
39

14 August 2006 J3/06-193r1

Subject: Comments on Clause 12
From: Van Snyder

1 Edits — and comments without editorial suggestions

Edits refer to 06-007. Page and line numbers are displayed in the margin. Absent other instructions, a
page and line number or line number range implies all of the indicated text is to be replaced by associated
text, while a page and line number followed by + (-) indicates that associated text is to be inserted after
(before) the indicated line. Remarks are noted in the margin, or appear between [and | in the text.

[Editor: “or” = comma, insert “, the appearance of an object processed by user-defined derived-type 297:21-22
input/output (9.5.3.7) in an input/output list, or finalization (4.5.6)” at the end of the sentence.]

[Internal subprograms are now allowed to be actual arguments. Editor: Delete “ the internal procedure 298:3-4
name shall not be argument associated with a dummy procedure (12.5.1.6)”.]

[Delete because “generic identifier” implies “explicit interface”.] 300:1-3

[Editor: For consistency with [302:12-14] “An explicit ...way” = “If an external procedure does not 302:27-29
exist in the program, an interface body for it may be used to specify an explicit specific interface but
the procedure shall not be used in any other way”.]

[The note seems to say that dummy arguments specified in a procedure definition or an interface body 302:30+2
might be the same as other dummy arguments in the same definition or interface body. Editor: “may

be different” = “in an interface body may be different from the corresponding dummy argument names

in the procedure definition”.]

[Subclause 16.3.4 doesn’t have anything to do with scope of local identifiers, which is the topic of 306:4+
Subclause 16.3. It more logically belongs here anyway. Editor: Move Subclause 16.3.4 here. Do we
thereby need to convert some of the ordinary normative text in it to constraints?)

[Editor: “initial-proc-target” = “initial-proc-target”.] 307:11

[Editor: “initialization target” = “initialization target”. \tdef will add it to the index, which is 307:44
needed, since the only one there refers to [65:26] and has to do only with variables.]

[Editor: Insert “ by user-defined derived-type input/output (9.5.3.7), or by finalization (4.5.6)” at the 310:1
end of the sentence.]

[The requirements aren’t (can’t be) posed as constraints. Editor: “constraints” = “requirements”. 317:5+2
At [311:13-16] one can conclude that no more than one actual argument can correspond to a dummy
argument. Editor: “actual arguments that correspond” = “an actual argument that corresponds”.]

[Doesn’t work for optional dummy arguments that don’t correspond to actual arguments. Editor: “the” 318:20
= “any corresponding” .|

[Doesn’t work for optional dummy arguments that don’t correspond to actual arguments. Editor: “the” 318:22
= “any corresponding”.]

[Editor: “associated ...argument” = “present”.] 319:40
[Editor: Insert “of” after “value”.] 321:4
[Editor: Delete “or” at [322:16], insert “, or finalization of an object” after “item”.] 322:16-17
[Editor: for consistency with [323:11], delete second “if”.] 323:21
[Editor: Simplify the paragraph by replacing it:] 327:28-32

The RECURSIVE prefiz-spec shall appear if any procedure defined by the subprogram directly or indi-
rectly invokes itself or any other procedure defined by the subprogram.

14 August 2006 Page 1 of 2

40

41
42

43

44
45

46

47

48

49

50
51

52

53

54

55

56
57

58

59
60

61
62

63
64

14 August 2006 J3/06-193r1

NOTE 12.40a
’ Each ENTRY statement in the subprogram defines an additional function. ‘

[But don’t do both this and 06-285, which deletes this pararaph.]

[Editor: Simplify and correct: “the pointer . ..disassociated” = “on return the pointer association status
of the result variable shall not be undefined” .

[Editor: Simplify the paragraph by replacing it:]
The RECURSIVE prefiz-spec shall appear if any procedure defined by the subprogram directly or indi-
rectly invokes itself or any other procedure defined by the subprogram.

NOTE 12.43a
’ Each ENTRY statement in the subprogram defines an additional subroutine.

[But don’t do both this and 06-285, which deletes this pararaph.]

[Editor: “function or subroutine” = “procedure”.]

When execution of an instance completes it ceases to exist.

[Editor: “is only accessible by use association” = “can be accessed by use association only”.]

[We usually use “executable construct” instead of “executable statement”. Editor: “executable state-
ment” = “executable construct” twice.]

Editor: Insert “or another procedure defined by the subprogram” after “itself”.]

Editor: Insert “of the referenced procedure” after “list”.]

Editor: “attributes” = “parameters”]

[Editor: Delete second “an”, insert “function” after the second “intrinsic”.]

Wouldn'’t it be simpler to say “a pure intrinsic procdure”? Compare to [335:12]. If it works there, why
not here? Editor: Replace by the following:]

(1) a pure intrinsic procedure (13.1),

[Editor: Insert “, or within the specification-part of a BLOCK construct within a pure subprogram,”
before “shall”. In light of C1281, delete “or internal-subprogram-part”.]

[Editor: “assignment” = “defined assignment, user-defined derived-type input/output”. Yes, DTIO can
happen, so long as the unit is an internal file.]

[Repairing the note to account for IMPURE would result in it saying “the constraints on pure procedures
apply to pure procedures.” Editor: Delete Note 12.51.]

14 August 2006 Page 2 of 2

327:41-42

329:19-23

329:29

329:38+ New §
330:22+2
331:31-32

332:6
332:19
333:7
333:28
333:33-34

334:7

335:2

336:8+1-3

