
2006/07/31 Argument association restructuring J3/06-255

To: J3/B
From: Malcolm Cohen
Subject: Argument association restructuring.
Date: 2006/07/31

1. Introduction

The requirements for argument association for dummy data objects are fiendishly complicated. But
worse, there is no coherent structure to the subclause explaining them. This subclause needs to be
rewritten.

2. Structure

There are many possible structures:

• 12.5.1.4 Ordinary dummy variables
12.5.1.5 Allocatable and pointer dummy variables

• 12.5.1.4 Ordinary dummy variables
12.5.1.5 Allocatable and pointer dummy variables
12.5.1.6 Allocatable dummy variables
12.5.1.7 Pointer dummy variables

• 12.5.1.4 Dummy data objects
12.5.1.4.1 General rules
12.5.1.4.2 Allocatable dummy arguments
12.5.1.4.3 Pointer dummy data objects
12.5.1.4.4 Ordinary dummy variables

This revision of this paper explores the second structure listed above; there is very little duplication
introduced by this structure, though that subclause does get longer by virtue of the extra space taken
up by the headings.

3. Edits to 06-007 (illustrative)

[312-316] 12.5.1.4 Actual arguments associated with dummy data objects
Change heading to
"Ordinary dummy variables"

and introduce new subclauses
"12.5.1.4a Allocatable and pointer dummy variables"
"12.5.1.4b Allocatable dummy variables"
"12.5.1.4c Pointer dummy variables".

[312:5-] Insert new initial paragraphs to 12.5.1.4 and the new subclauses
"The requirements in this subclause apply to actual arguments associated
with nonpointer nonallocatable dummy data objects."
For 12.5.1.4a
"The requirements in this subclause apply to actual arguments associated
with either allocatable or pointer dummy data objects."
For 12.5.1.4b
"The requirements in this subclause apply to actual arguments associated
with allocatable dummy data objects."

1



J3/06-255 Argument association restructuring 2006/07/31

For 12.5.1.4c
"The requirements in this subclause apply to actual arguments associated
with dummy data pointers.".

[312:5-9] Replace with
"The dummy argument shall be type compatible or bits compatible with the
associated actual argument."

For 12.5.1.4a
"The actual argument shall be polymorphic if and only if the dummy
argument is polymorphic, and either both the actual and dummy arguments
shall be unlimited polymorphic, or the declared type of the actual argument
shall be the same as the declared type of the dummy argument.".

[312:9+-10-] Move note 12.21 to 12.5.1.4a.

[312:10-13] Leave this paragraph in 12.5.1.4 as is, and copy the first half
(up to but not including the ", except") into 12.5.1.4a, viz

"Unless the actual argument and the corresponding dummy argument are bits
compatible, the type parameter values of the actual argument shall agree
with the corresponding ones of the dummy argument that are not assumed or
deferred.".

[312:14-18] Leave as is.

[312:19-20] Leave in 12.5.1.4a as is, plus copy into 12.5.1.4a.

[312:21-22] Move into 12.5.1.4a, deleting "that is allocatable or a pointer".

[312:23-24] Leave as is, together with the following note and UTIs.

[313:1-4] Move into 12.5.1.4c, changing
"If the dummy argument is a pointer that" -> "If the dummy argument".

{This also improves the clarity of the Otherwise sentence in this paragraph.}

[313:5-8 plus j3 note at top of 314] Move into 12.5.1.4c, changing
"If the dummy argument and actual argument are pointers, the" -> "The"

{I think this also fixes a technical flaw - at least I cannot understand how
the auto-targetting works if the ranks differ, since pointer assignment to a
plain named pointer doesn’t allow that.}

[314:1-4 plus j3 note before 314:5] Move into 12.5.1.4b, changing
"If a dummy argument is allocatable, the" -> "The".

[314:5-6] Move to 12.5.1.4c, rewriting.

et cetera.

4. Edits for restructuring (by result)

These start on page 312. Note that I’ve left the J3 internal notes in.

2



J3/06-255 Argument association restructuring 2006/07/31

12.5.1.5 Ordinary dummy variables1

The requirements in this subclause apply to actual arguments that are associated with nonallocatable2

nonpointer dummy data objects.3

The dummy argument shall be type compatible or bits compatible (4.3.1.3) with the associated actual4

argument.5

Unless the actual argument and the corresponding dummy argument are bits compatible, the type6

parameter values of the actual argument shall agree with the corresponding ones of the dummy argument7

that are not assumed, except for the case of the character length parameter of an actual argument of8

type default character associated with a dummy argument that is not assumed shape.9

If a scalar dummy argument is of type default character, the length len of the dummy argument shall10

be less than or equal to the length of the actual argument. The dummy argument becomes associated11

with the leftmost len characters of the actual argument. If an array dummy argument is of type default12

character and is not assumed shape, it becomes associated with the leftmost characters of the actual13

argument element sequence (12.5.1.8) and it shall not extend beyond the end of that sequence.14

The values of assumed type parameters of a dummy argument are assumed from the corresponding type15

parameters of the associated actual argument.16

If the actual argument is a co-indexed object, the dummy argument shall not be a co-array and shall17

have the INTENT(IN) or the VALUE attribute.18

J3 internal note
Unresolved Technical Issue 50
It doesn’t seem like forcing the user to write

localvar = x[i]
CALL sub(localvar)
x[i] = localvar

is a substantial improvement in, well, anything. Not to mention that the user cannot do that if
x[i] is undefined or only partially defined before the call to sub. It doesn’t seem to be any more
work for the processor than what it already does for

CALL sub(a(1:n:2))

for explicit-shape dummies. And, MUCH WORSE, this makes defined assignment unusable with
co-arrays. Can we say “not even integrated with Fortran 90”?
Subgroup said: “this requires more complications to the memory consistency rules since the copy
out may overwrite other changes to the variable.”
The editor says: That is just so untrue it is not funny.
Is everyone REALLY that ignorant of our dummy argument aliasing rules?
We’ve not repealed them, and there are no edits to subvert them for co-arrays. If they need to be
subverted (something I doubt, but maybe the go-faster department want to go slower), something
needs to be done.
Either way this is a serious technical flaw.

NOTE 12.1
If the actual argument is a co-indexed object and the corresponding dummy argument is not a co-
array, it is likely that a processor will make a copy on the executing image of the actual argument,
including copies of any allocated allocatable subcomponents, before argument association occurs.

312



2006/07/31 Argument association restructuring J3/06-255

NOTE 12.1 (cont.)

J3 internal note
Unresolved Technical Issue 51
That doesn’t seem likely for the vast majority of Fortran processing systems, which are going to
be shared-memory small-cpu-count. They are, presumably, going to do the “right thing” here.
That does not involve making any copies.
Anyway, what’s this “and the ... dummy is not a co-array.” guff. Last time I looked, a co-indexed
object was not a valid actual argument to a co-array dummy.

Except in references to intrinsic inquiry functions, if the dummy argument is not nonoptional and the1

actual argument is allocatable, the corresponding actual argument shall be allocated.2

If the dummy argument has the VALUE attribute it becomes associated with a definable anonymous3

data object whose initial value is that of the actual argument. Subsequent changes to the value or4

definition status of the dummy argument do not affect the actual argument.5

NOTE 12.2
Fortran argument association is usually similar to call by reference and call by value-result. If the
VALUE attribute is specified, the effect is as if the actual argument is assigned to a temporary,
and the temporary is then argument associated with the dummy argument. The actual mechanism
by which this happens is determined by the processor.

If the dummy argument does not have the TARGET attribute, any pointers associated with the ac-6

tual argument do not become associated with the corresponding dummy argument on invocation of the7

procedure. If such a dummy argument is used as an actual argument that is associated with a dummy ar-8

gument with the TARGET attribute, whether any pointers associated with the original actual argument9

become associated with the dummy argument with the TARGET attribute is processor dependent.10

If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and is either a11

scalar or an assumed-shape array that does not have the CONTIGUOUS attribute, and the corresponding12

actual argument has the TARGET attribute but is not a co-indexed object or an array section with a13

vector subscript then14

(1) any pointers associated with the actual argument become associated with the corresponding15

dummy argument on invocation of the procedure, and16

(2) when execution of the procedure completes, any pointers that do not become undefined17

(16.5.2.2.3) and are associated with the dummy argument remain associated with the actual18

argument.19

If the dummy argument has the TARGET attribute and is an explicit-shape array, an assumed-shape ar-20

ray with the CONTIGUOUS attribute, or an assumed-size array, and the corresponding actual argument21

has the TARGET attribute but is not an array section with a vector subscript then22

(1) on invocation of the procedure, whether any pointers associated with the actual argument23

become associated with the corresponding dummy argument is processor dependent, and24

(2) when execution of the procedure completes, the pointer association status of any pointer25

that is pointer associated with the dummy argument is processor dependent.26

If the dummy argument has the TARGET attribute and the corresponding actual argument does not27

have the TARGET attribute or is an array section with a vector subscript, any pointers associated with28

the dummy argument become undefined when execution of the procedure completes.29

If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers associated30

with the dummy argument become undefined when execution of the procedure completes.31

313



J3/06-255 Argument association restructuring 2006/07/31

If the actual argument is scalar, the corresponding dummy argument shall be scalar unless the actual1

argument is of type default character, of type character with the C character kind (15.2), or is an element2

or substring of an element of an array that is not an assumed-shape, pointer, or polymorphic array. If3

the procedure is nonelemental and is referenced by a generic name or as a defined operator or defined4

assignment, the ranks of the actual arguments and corresponding dummy arguments shall agree.5

If a dummy argument is an assumed-shape array, the rank of the actual argument shall be the same as6

the rank of the dummy argument; the actual argument shall not be an assumed-size array (including an7

array element designator or an array element substring designator).8

Except when a procedure reference is elemental (12.8), each element of an array actual argument or of9

a sequence in a sequence association (12.5.1.8) is associated with the element of the dummy array that10

has the same position in array element order (6.2.2.2).11

NOTE 12.3
For type default character sequence associations, the interpretation of element is provided in
12.5.1.8.

A scalar dummy argument of a nonelemental procedure may be associated only with a scalar actual12

argument.13

If a dummy argument has INTENT (OUT) or INTENT (INOUT), the argument associated entity shall14

be definable. If a dummy argument has INTENT (OUT), the argument associated entity becomes15

undefined at the time the association is established, except for components of an object of derived type16

for which default initialization has been specified. If the dummy argument is not polymorphic and the17

type of the actual argument is an extension type of the type of the dummy argument, only the part of18

the actual argument that is of the same type as the dummy argument becomes undefined.19

If the actual argument is an array section having a vector subscript, the dummy argument is not defin-20

able and shall not have the INTENT (OUT), INTENT (INOUT), VOLATILE, or ASYNCHRONOUS21

attributes.22

NOTE 12.4
Argument intent specifications serve several purposes. See Note 5.16.

NOTE 12.5
For more explanatory information on argument association and evaluation, see subclause C.9.5.
For more explanatory information on targets as dummy arguments, see subclause C.9.6.

J3 internal note
Unresolved Technical Issue 55
Probably need this constraint:
C1201 An actual argument that is a co-indexed object shall not be associated with a dummy

argument that has the ASYNCHRONOUS attribute.
It is true that allowing VALUE+ASYNCHRONOUS makes a mockery of the restrictions on
ASYNCHRONOUS dummies and note (04-007) 12.26 about their purpose. But should co-arrays
try to be consistent or should they copy this inconsistency?

C1202 (R1223) If an actual argument is an array section or an assumed-shape array, and the corre-23

sponding dummy argument has either the VOLATILE or ASYNCHRONOUS attribute, that24

dummy argument shall be an assumed-shape array.25

C1203 (R1223) If an actual argument is a pointer array, and the corresponding dummy argument26

has either the VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be an27

314



2006/07/31 Argument association restructuring J3/06-255

assumed-shape array that does not have the CONTIGUOUS attribute or a pointer array.1

NOTE 12.6
The constraints on actual arguments that correspond to a dummy argument with either the ASYN-
CHRONOUS or VOLATILE attribute are designed to avoid forcing a processor to use the so-called
copy-in/copy-out argument passing mechanism. Making a copy of actual arguments whose values
are likely to change due to an asynchronous I/O operation completing or in some unpredictable
manner will cause those new values to be lost when a called procedure returns and the copy-out
overwrites the actual argument.

12.5.1.6 Allocatable and pointer dummy variables2

The requirements in this subclause apply to actual arguments that are associated with either allocatable3

or pointer dummy data objects.4

The actual argument shall be polymorphic if and only if the associated dummy argument is polymorphic,5

and either both the actual and dummy arguments shall be unlimited polymorphic, or the declared type6

of the actual argument shall be the same as the declared type of the dummy argument.7

NOTE 12.7
The dynamic type of a polymorphic allocatable or pointer dummy argument may change as a
result of execution of an allocate statement or pointer assignment in the subprogram. Because of
this the corresponding actual argument needs to be polymorphic and have a declared type that
is the same as the declared type of the dummy argument or an extension of that type. However,
type compatibility requires that the declared type of the dummy argument be the same as, or an
extension of, the type of the actual argument. Therefore, the dummy and actual arguments need
to have the same declared type.

Dynamic type information is not maintained for a nonpolymorphic allocatable or pointer dummy
argument. However, allocating or pointer assigning such a dummy argument would require main-
tenance of this information if the corresponding actual argument is polymorphic. Therefore, the
corresponding actual argument needs to be nonpolymorphic.

Unless the actual argument and the corresponding dummy argument are bits compatible, the type8

parameter values of the actual argument shall agree with the corresponding ones of the dummy argument9

that are not assumed or deferred.10

The values of assumed type parameters of a dummy argument are assumed from the corresponding type11

parameters of the associated actual argument.12

The actual argument shall have deferred the same type parameters as the dummy argument.13

12.5.1.7 Allocatable dummy variables14

The requirements in this subclause apply to actual arguments that are associated with allocatable dummy15

data objects.16

The actual argument shall be allocatable, the ranks shall agree, and either the nondeferred type pa-17

rameters shall agree or the actual argument and the dummy argument shall be bits compatible. It is18

permissible for the actual argument to have an allocation status of unallocated.19

315



J3/06-255 Argument association restructuring 2006/07/31

J3 internal note
Unresolved Technical Issue 53
Argument-associating allocatables of different types does not seem to be in accordance with the
spirit of our current rules. It requires a processor to use the same representation for allocatables
of different kinds or to do copyin/copyout conversions. Why are we doing this?
Furthermore, the very concept of having allocatable entities of REAL and INTEGER types being
associated with one another is blood-curdling. Just how far the implications of this would go I am
not sure; certainly they are not good for reliability and portability, whether performance suffers
as well I cannot say without spending considerable effort.
This butchery of our association rules does not seem at all necessary for BITS to be useful.

If the dummy argument does not have the TARGET attribute, any pointers associated with the ac-1

tual argument do not become associated with the corresponding dummy argument on invocation of the2

procedure. If such a dummy argument is used as an actual argument that is associated with a dummy ar-3

gument with the TARGET attribute, whether any pointers associated with the original actual argument4

become associated with the dummy argument with the TARGET attribute is processor dependent.5

If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and is either a6

scalar or an assumed-shape array that does not have the CONTIGUOUS attribute, and the corresponding7

actual argument has the TARGET attribute but is not a co-indexed object or an array section with a8

vector subscript then9

(1) any pointers associated with the actual argument become associated with the corresponding10

dummy argument on invocation of the procedure, and11

(2) when execution of the procedure completes, any pointers that do not become undefined12

(16.5.2.2.3) and are associated with the dummy argument remain associated with the actual13

argument.14

If a dummy argument has INTENT (OUT) or INTENT (INOUT), the argument associated entity shall15

be definable. If a dummy argument has INTENT (OUT), the argument associated entity becomes16

undefined at the time the association is established, except for components of an object of derived type17

for which default initialization has been specified.18

12.5.1.8 Pointer dummy variables19

The requirements in this subclause apply to actual arguments that are associated with dummy data20

pointers.21

If the dummy argument does not have the INTENT(IN) attribute, the actual argument shall be a22

pointer. Otherwise, the actual argument shall be a pointer or a valid target for the dummy pointer23

in an assignment statement. If the actual argument is not a pointer, the dummy pointer becomes24

pointer-associated with the actual argument.25

The ranks shall agree and either the nondeferred type parameters shall agree or the actual argument and26

the dummy argument shall be bits compatible. If the dummy pointer has the CONTIGUOUS attribute,27

the actual argument shall have the CONTIGUOUS attribute.28

316



2006/07/31 Argument association restructuring J3/06-255

J3 internal note
Unresolved Technical Issue 52
Argument-associating pointers of different types does not seem to be in accordance with the spirit
of our current rules. It requires a processor to use the same representation for pointers of different
kinds or to do copyin/copyout conversions. Why are we doing this?
Furthermore, this “pseudo-polymorphism” for bits leads directly to INTEGER pointers being
associated with REAL targets. This will be a serious inhibition on optimisation. It is an open
invitation to programming errors and nonportable hacks.
NOTE: A similar comment would apply to pointer assignment if one is allowed to turn a bits
pointer into another pointer (the term “bits compatible” not being well-defined as yet, I don’t
know whether this is the case). Fiddling with the bits is one thing, but removing the type
restrictions on our pointers is simply unacceptable both from a software engineering point of view
and from a performance point of view.

If the dummy argument has INTENT(OUT), the pointer association status of the associated actual1

argument becomes undefined on invocation of the procedure.2

If the dummy argument is nonoptional and the actual argument is allocatable, the actual argument shall3

be allocated.4

NOTE 12.8
For more explanatory information on pointers as dummy arguments, see subclause C.9.6.

317


