Subject:Further (ultimate?) generalization of rank remappingFrom:Van Snyder

1 **1** Introduction

2 Pointer rank remapping could be generalized beyond contiguous objects to any sequence of uniformly-3 spaced array elements. Rank-one arrays are uniformly spaced, but others would qualify.

4 2 Edits

5 Edits refer to 06-007r1. Page and line numbers are displayed in the margin. Absent other instructions, a 6 page and line number or line number range implies all of the indicated text is to be replaced by associated 7 text, while a page and line number followed by +(...) indicates that associated text is to be incerted after

7 text, while a page and line number followed by + (-) indicates that associated text is to be inserted after 8 (before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.

9 [Editor: Add before the paragraph:]

10 An object is **uniform** if it is

11	(1)	contiguous $(5.3.6)$,
12	(2)	of rank one,
13	(3)	a dummy argument that is argument associated with an actual argument array that is
14		uniform,
15	(4)	a pointer that is associated with a uniform target, or
16	(5)	an array section that
17		(a) has a uniform base object,
18		(b) does not have a vector subscript, and

19 (c) consists of elements of a subset of the base object whose array element-order (6.2.2.2) 20 positions within the base object are uniformly spaced.

NOTE 7.47a

A scalar is uniform because it is contiguous. Assuming A has shape [4,4,4], A(1,:,2) is uniform because it is a rank one array; the following higher-rank sections are either uniform or not, as shown by the array-element order within A of the elements of the sections.

Uniform		Not uniform	
Section	Elements	Section	Elements
A(:,:,1)	1:16	A(1:2,:,1)	1, 2, 5, 6, 9, 10, 13 and 14
A(::2,:,1)	1:16:2	A(:,::2,1)	1:4, 9:11
A(4:1:-1,4:1:-1,4:1:-1)	64:1:-1	A(4:1:-1,1:2,1)	4:1:-1, 8:5:-1
A(4:1:-1,4:1:-1,4:1:-1)	04.11	A(4:1:-1,1:2,1)	4:1:-1, 0:0:-1

21 [Then replace "contiguous ... one" by "uniform".]

22 [Editor: In the second line of the note, "either rank one or contiguous" \Rightarrow "uniform".]

165:Note 7.49

164:22