
26 September 2006 J3/06-312

Subject: Reorganization of Subclause 7.1
From: Van Snyder

Every time I try to read about operations, it’s really tedious because they are defined in 7.1.2 and 7.1.3,1

the interpretations are given in 7.2, and the rules of evaluation are given in 7.1.8. The problem is that2

the matrix was sliced in the wrong direction. In what follows, I’ve moved 7.3 Precedence of operators3

to be after 7.1.1 Form of an expression, 7.1.8.1 Evaluation of operations to be between that and4

7.1.2 Intrinsic operations, each “interpretation” subclause from 7.2 Interpretation of operations to be5

after the appropriate definition, and each “evaluation” subclause from 7.1.8 Evaluation to be after the6

appropriate “interpretation” subclause. The only things I removed were cross references that became7

unnecessary. I changed “interpretation of an expression has been established” to “interpretation of the8

. . . operation is established,” and the wording of some cross references. If this reorganization is done, it9

should be done after 06-296 is considered. Here’s the new outline for Clause 7:10

7.1 Expressions11

7.1.1 Form of an expression [unchanged]12

7.1.2 Precedence of operators [unchanged]13

7.1.3 Evaluation of operations14

7.1.4 Intrinsic operations15

7.1.4.1 Numeric intrinsic operations16

7.1.4.1.1 Interpretation of numeric intrinsic operations17

7.1.4.1.1 Interpretation of numeric intrinsic operations18

7.1.4.1.2 Integer division19

7.1.4.1.3 Complex exponentiation20

7.1.4.1.4 Evaluation of numeric intrinsic operations21

7.1.4.2 Character intrinsic operation22

7.1.4.2.1 Interpretation of the character intrinsic operation23

7.1.4.2.2 Evaluation of the character intrinsic operation24

7.1.4.3 Logical intrinsic operations25

7.1.4.3.1 Interpretation of logical intrinsic operations26

7.1.4.3.2 Evaluation of logical intrinsic operations27

7.1.4.4 Bits intrinsic operations28

7.1.4.4.1 Interpretation of bits intrinsic operations29

7.1.4.4.2 Evaluation of bits intrinsic operations30

7.1.4.5 Relational intrinsic operations31

7.1.4.5.1 Interpretation of relational intrinsic operations32

7.1.4.5.2 Evaluation of relational intrinsic operations33

7.1.5 Defined operations34

7.1.5.1 Interpretation of a defined operation35

7.1.5.2 Evaluation of a defined operation36

7.1.6 Evaluation of operands [unchanged]37

7.1.7 Integrity of parentheses [cross reference wording changed]38

7.1.8 Type, type parameters, and shape of an expression [unchanged]39

7.1.9 Conformability rules for elemental operations [unchanged]40

7.1.10 Specification expression [unchanged]41

7.1.11 Initialization expression [unchanged]42

7.2 Assignment [and all its subsubclauses] [unchanged]43

A clause with only two subclauses is kind of pathetic. Maybe we should split clause 7 Expressions and44

assignment into clauses 7 Expressions and 8 Assignment, which would increase the clause number of45

each succeeding clause.46

1

26 September 2006 Revised parts of Clause 7 J3/06-312

7 Expressions and assignment47

[Text is unchanged.]48

7.1 Expressions49

[Text is unchanged.]50

7.1.1 Form of an expression51

[Text is unchanged.]52

7.1.2 Precedence of operators53

[Was 7.3. Text is unchanged.]54

7.1.3 Evaluation of operations55

[Was 7.1.8.1. Text is unchanged.]56

7.1.4 Intrinsic operations57

An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An58

intrinsic unary operation is an operation of the form intrinsic-operator x2 where x2 is of an intrinsic59

type (4.4) listed in Table 7.1 for the unary intrinsic operator.60

An intrinsic binary operation is an operation of the form x1 intrinsic-operator x2 where x1 and61

x2 are of the intrinsic types (4.4) listed in Table 7.1 for the binary intrinsic operator and are in shape62

conformance (7.1.9).63

The interpretations defined in subclause 7.1.4 apply to both scalars and arrays; the interpretation for64

arrays is obtained by applying the interpretation for scalars element by element.65

The type, type parameters and interpretation of an expression that consists of an intrinsic operation are66

independent of the type and type parameters of the context or any larger expression in which it appears.67

NOTE 7.1
For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic
conversion function, the expression INT (X + J) is an integer expression and X + J is a real
expression.

Table 7.1: Type of operands and results for intrinsic operators
Intrinsic operator Type of Type of Type of

op x1 x2 [x1] op x2

Unary +, – I, R, Z I, R, Z
I I, R, Z I, R, Z

Binary +, –, *, /, ** R I, R, Z R, R, Z
Z I, R, Z Z, Z, Z

137

J3/06-312 Revised parts of Clause 7 26 September 2006

Type of operands and results for intrinsic operators (cont.)
Intrinsic operator Type of Type of Type of

op x1 x2 [x1] op x2

// C C C
B B B
I I, R, Z, B L, L, L, L

.EQ., .NE., R I, R, Z, B L, L, L, L
==, /= Z I, R, Z, B L, L, L, L

C C L
I I, R L, L

.GT., .GE., .LT., .LE. R I, R L, L
>, >=, <, <= C C L

.NOT. L, B L, B
L L L

.AND., .OR., .EQV., .NEQV. B B,I B
I B B

Note: The symbols I, R, Z, C, L, and B stand for the types integer, real, complex,
character, logical, and bits, respectively. Where more than one type for x2

is given, the type of the result of the operation is given in the same relative
position in the next column. For the intrinsic operators with operands of
type character, the kind type parameters of the operands shall be the same.

7.1.4.1 Numeric intrinsic operations68

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric69

operator (+, –, *, /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic70

operation.71

7.1.4.1.1 Interpretation of numeric intrinsic operations72

The two operands of numeric intrinsic binary operations may be of different numeric types or different73

kind type parameters. Except for a value raised to an integer power, if the operands have different types74

or kind type parameters, the effect is as if each operand that differs in type or kind type parameter from75

those of the result is converted to the type and kind type parameter of the result before the operation76

is performed. When a value of type real or complex is raised to an integer power, the integer operand77

need not be converted.78

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation79

produces a numeric value. The permitted data types for operands of the numeric intrinsic operations80

are specified in 7.1.4.81

The numeric operators and their interpretation in an expression are given in Table 7.2, where x1 denotes82

the operand to the left of the operator and x2 denotes the operand to the right of the operator.83

Table 7.2: Interpretation of the numeric intrinsic operators
Operator Representing Use of operator Interpretation

** Exponentiation x1 ** x2 Raise x1 to the power x2

/ Division x1 / x2 Divide x1 by x2

* Multiplication x1 * x2 Multiply x1 by x2

- Subtraction x1 - x2 Subtract x2 from x1

- Negation - x2 Negate x2

+ Addition x1 + x2 Add x1 and x2

+ Identity + x2 Same as x2

138

26 September 2006 Revised parts of Clause 7 J3/06-312

The interpretation of a division operation depends on the types of the operands (7.1.4.1.2).84

If x1 and x2 are of type integer and x2 has a negative value, the interpretation of x1 ** x2 is the same85

as the interpretation of 1/(x1 ** ABS (x2)), which is subject to the rules of integer division (7.1.4.1.2).86

NOTE 7.2
For example, 2 ** (–3) has the value of 1/(2 ** 3), which is zero.

7.1.4.1.2 Integer division87

One operand of type integer may be divided by another operand of type integer. Although the math-88

ematical quotient of two integers is not necessarily an integer, Table 7.1 specifies that an expression89

involving the division operator with two operands of type integer is interpreted as an expression of type90

integer. The result of such an operation is the integer closest to the mathematical quotient and between91

zero and the mathematical quotient inclusively.92

NOTE 7.3
For example, the expression (–8) / 3 has the value (–2).

7.1.4.1.3 Complex exponentiation93

In the case of a complex value raised to a complex power, the value of the operation x1 ** x2 is the94

principal value of xx2
1 .95

7.1.4.1.4 Evaluation of numeric intrinsic operations96

Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any97

mathematically equivalent expression, provided that the integrity of parentheses is not violated.98

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their99

primaries, their mathematical values are equal. However, mathematically equivalent expressions of100

numeric type may produce different computational results.101

NOTE 7.4
Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference,
not a mathematical difference. The difference between the values of the expressions 5/2 and 5./2.
is a mathematical difference, not a computational difference.

The mathematical definition of integer division is given in 7.1.4.1.2.

NOTE 7.5
The following are examples of expressions with allowable alternative forms that may be used by the
processor in the evaluation of those expressions. A, B, and C represent arbitrary real or complex
operands; I and J represent arbitrary integer operands; and X, Y, and Z represent arbitrary
operands of numeric type.

Expression Allowable alternative form
X + Y Y + X
X * Y Y * X
-X + Y Y - X
X + Y + Z X + (Y + Z)
X - Y + Z X - (Y - Z)
X * A / Z X * (A / Z)

139

J3/06-312 Revised parts of Clause 7 26 September 2006

NOTE 7.5 (cont.)

X * Y - X * Z X * (Y - Z)
A / B / C A / (B * C)
A / 5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that shall not be used
by a processor in the evaluation of those expressions.

Expression Forbidden alternative form
I / 2 0.5 * I
X * I / J X * (I / J)
I / J / A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X * Y - X * Z

The execution of any numeric operation whose result is not defined by the arithmetic used by the102

processor is prohibited. Raising a negative-valued primary of type real to a real power is prohibited.103

In addition to the parentheses required to establish the desired interpretation, parentheses may be104

included to restrict the alternative forms that may be used by the processor in the actual evaluation105

of the expression. This is useful for controlling the magnitude and accuracy of intermediate values106

developed during the evaluation of an expression.107

NOTE 7.6
For example, in the expression

A + (B - C)

the parenthesized expression (B – C) shall be evaluated and then added to A.

The inclusion of parentheses may change the mathematical value of an expression. For example,
the two expressions

A * I / J
A * (I / J)

may have different mathematical values if I and J are of type integer.

Each operand in a numeric intrinsic operation has a type that may depend on the order of evaluation108

used by the processor.109

NOTE 7.7
For example, in the evaluation of the expression

Z + R + I

where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of
the operand that is added to I may be either complex or real, depending on which pair of operands
(Z and R, R and I, or Z and I) is added first.

140

26 September 2006 Revised parts of Clause 7 J3/06-312

7.1.4.2 Character intrinsic operation110

The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//)111

and both operands are of type character. The operands shall have the same kind type parameter. The112

character intrinsic operator is the operator in a character intrinsic operation.113

7.1.4.2.1 Interpretation of the character intrinsic operation114

The character intrinsic operator // is used to concatenate two operands of type character with the same115

kind type parameter. Evaluation of the character intrinsic operation produces a result of type character.116

The interpretation of the character intrinsic operator // when used to form an expression is given in117

Table 7.4, where x1 denotes the operand to the left of the operator and x2 denotes the operand to the118

right of the operator.119

Table 7.4: Interpretation of the character intrinsic operator //
Operator Representing Use of operator Interpretation

// Concatenation x1 // x2 Concatenate x1 with x2

The result of the character intrinsic operation // is a character string whose value is the value of x1120

concatenated on the right with the value of x2 and whose length is the sum of the lengths of x1 and x2.121

Parentheses used to specify the order of evaluation have no effect on the value of a character expression.122

NOTE 7.8
For example, the value of (’AB’ // ’CDE’) // ’F’ is the string ’ABCDEF’. Also, the value of
’AB’ // (’CDE’ // ’F’) is the string ’ABCDEF’.

7.1.4.2.2 Evaluation of the character intrinsic operation123

A processor is only required to evaluate as much of the character intrinsic operation as is required by124

the context in which the expression appears.125

NOTE 7.9
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
C1 = C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine
the value of C1 because C1 and C2 both have a length of 2.

7.1.4.3 Logical intrinsic operations126

A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR.,127

.XOR., .NOT., .EQV., or .NEQV. and both operands are of type logical. A logical intrinsic operator128

is the operator in a logical intrinsic operation.129

7.1.4.3.1 Interpretation of logical intrinsic operations130

A logical operation is used to express a logical computation. Evaluation of a logical operation produces131

a result of type logical. The permitted types for operands of the logical intrinsic operations are specified132

in 7.1.4.133

141

J3/06-312 Revised parts of Clause 7 26 September 2006

The logical operators and their interpretation when used to form an expression are given in Table 7.5,134

where x1 denotes the operand to the left of the operator and x2 denotes the operand to the right of the135

operator.136

Table 7.5: Interpretation of the logical intrinsic operators
Operator Representing Use of operator Interpretation
.NOT. Logical negation .NOT. x2 True if x2 is false
.AND. Logical conjunction x1 .AND. x2 True if x1 and x2 are both true
.OR. Logical inclusive disjunction x1 .OR. x2 True if x1 and/or x2 is true

.EQV. Logical equivalence x1 .EQV. x2
True if both x1 and x2 are true or
both are false

.NEQV. Logical nonequivalence x1 .NEQV. x2
True if either x1 or x2 is true, but
not both

.XOR. Logical nonequivalence x1 .XOR. x2
True if either x1 or x2 is true, but
not both

The values of the logical intrinsic operations are shown in Table 7.6.137

Table 7.6: The values of operations involving logical intrinsic operators
x1 x2 .NOT. x2 x1 .AND. x2 x1 .OR. x2 x1 .EQV. x2 x1 .NEQV. x2 x1 .XOR. x2

true true false true true true false false
true false true false true false true true
false true false false true false true true
false false true false false true false false

7.1.4.3.2 Evaluation of logical intrinsic operations138

Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any139

other expression that is logically equivalent, provided that the integrity of parentheses in any expression140

is not violated.141

NOTE 7.10
For example, for the variables L1, L2, and L3 of type logical, the processor may choose to evaluate
the expression

L1 .AND. L2 .AND. L3

as

L1 .AND. (L2 .AND. L3)

Two expressions of type logical are logically equivalent if their values are equal for all possible values of142

their primaries.143

7.1.4.4 Bits intrinsic operations144

A bits intrinsic operation is an intrinsic operation for which the intrinsic-operator is //, .AND., .OR.,145

.XOR., .NOT., .EQV., or .NEQV. and at least one operand is of type bits. A bits intrinsic operator146

is the operator in a bits intrinsic operation.147

142

26 September 2006 Revised parts of Clause 7 J3/06-312

7.1.4.4.1 Interpretation of bits intrinsic operations148

For bits intrinsic operations other than concatenation (//), the two operands may be of different types149

or different kind type parameters. The effect is as if each operand that differs in type or kind type150

parameter from those of the result is converted to the type and kind type parameter of the result before151

the operation is performed.152

Bit operations are used to express bitwise operations on sequences of bits, or to concatenate such153

sequences. Evaluation of a bits operation produces a result of type bits. The permitted types of154

operands of the bits intrinsic operations are specified in 7.1.4.155

The bits operators and their interpretation when used to form an expression are given in Table 7.7,156

where x1 denotes the operand of type bits to the left of the operator and x2 denotes the operand of type157

bits to the right of the operator.158

Table 7.7: Interpretation of the bits intrinsic operators
Operator Representing Use of operator Interpretation

(//) Concatenation x1 // x2 Concatenation of x1 and x2

.NOT. Bitwise NOT .NOT. x2 Bitwise NOT of x2

.AND. Bitwise AND x1 .AND. x2 Bitwise AND of x1 and x2

.OR. Bitwise inclusive OR x1 .OR. x2 Bitwise OR of x1 and x2

.EQV. Bitwise equivalence x1 .EQV. x2 Bitwise equivalence of x1 and x2

.NEQV. Bitwise nonequivalence x1 .NEQV. x2 Bitwise nonequivalence of x1 and x2

.XOR. Bitwise exclusive OR x1 .XOR. x2 Bitwise exclusive OR of x1 and x2

The leftmost KIND(x1) bits of the result of the bits concatenation operation are the value of x1 and the159

rightmost KIND(x2) bits of the result are the value of x2.160

For a bits intrinsic operation other than //, the result value is computed separately for each pair of bits161

at corresponding positions in each operand. The value of each bit operation, for bits denoted b1 and b2162

are given in Table 7.8.163

Table 7.8: The values of bits intrinsic operations other than //
x1 x2 .NOT. x2 x1 .AND. x2 x1 .OR. x2 x1 .EQV. x2 x1 .NEQV. x2 x1 .XOR. x2

1 1 0 1 1 1 0 0
1 0 1 0 1 0 1 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0

7.1.4.4.2 Evaluation of bits intrinsic operations164

Once the interpretation of a bits operation is established, the processor may evaluate any other expression165

that is computationally equivalent, provided that the integrity of parentheses in any expression is not166

violated.167

NOTE 7.11
For example, for the variables B1, B2, and B3 of type bits, the processor may choose to evaluate
the expression

B1 .XOR. B2 .XOR. B3

as

143

J3/06-312 Revised parts of Clause 7 26 September 2006

NOTE 7.11 (cont.)

B1 .XOR. (B2 .XOR. B3)

Two expressions of type bits are computationally equivalent if their values are equal for all possible168

values of their primaries.169

7.1.4.5 Relational intrinsic operations170

A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==,171

/=, >, >=, <, or <=. The operators <, <=, >, >=, ==, and /= always have the same interpretations172

as the operators .LT., .LE., .GT., .GE., .EQ., and .NE., respectively. A relational intrinsic operation173

is an intrinsic operation for which the intrinsic-operator is a relational intrinsic operator. A numeric174

relational intrinsic operation is a relational intrinsic operation for which both operands are of numeric175

type. A character relational intrinsic operation is a relational intrinsic operation for which both176

operands are of type character. The kind type parameters of the operands of a character relational177

intrinsic operation shall be the same. A bits relational intrinsic operation is a relational intrinsic178

operation for which at least one of the operands is of type bits.179

If both operands of a bits relational operation do not have the same kind type parameter, the operand180

with the smaller kind type parameter is converted to the same kind as the other operand. If one operand181

of a bits relational operation is not of type bits, it is converted to type bits with the same kind type182

parameter as the other operand. Any conversion takes place before the operation is evaluated.183

7.1.4.5.1 Interpretation of relational intrinsic operations184

A relational intrinsic operation is used to compare values of two operands using the relational intrinsic185

operators .LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for186

operands of the relational intrinsic operators are specified in 7.1.4.187

NOTE 7.12
As shown in Table 7.1, a relational intrinsic operator cannot be used to compare the value of an
expression of a numeric type with one of type character or logical. Also, two operands of type
logical cannot be compared, a complex operand may be compared with another numeric operand
only when the operator is .EQ., .NE., ==, or /=, and two character operands cannot be compared
unless they have the same kind type parameter value.

Evaluation of a relational intrinsic operation produces a result of type default logical.188

The interpretation of the relational intrinsic operators is given in Table 7.9, where x1 denotes the operand189

to the left of the operator and x2 denotes the operand to the right of the operator.190

Table 7.9: Interpretation of the relational intrinsic operators
Operator Representing Use of operator Interpretation

.LT. Less than x1 .LT. x2 x1 less than x2

< Less than x1 < x2 x1 less than x2

.LE. Less than or equal to x1 .LE. x2 x1 less than or equal to x2

<= Less than or equal to x1 <= x2 x1 less than or equal to x2

.GT. Greater than x1 .GT. x2 x1 greater than x2

> Greater than x1 > x2 x1 greater than x2

.GE. Greater than or equal to x1 .GE. x2 x1 greater than or equal to x2

>= Greater than or equal to x1 >= x2 x1 greater than or equal to x2

.EQ. Equal to x1 .EQ. x2 x1 equal to x2

== Equal to x1 == x2 x1 equal to x2

144

26 September 2006 Revised parts of Clause 7 J3/06-312

Interpretation of the relational intrinsic operators (cont.)
Operator Representing Use of operator Interpretation

.NE. Not equal to x1 .NE. x2 x1 not equal to x2

/= Not equal to x1 /= x2 x1 not equal to x2

A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the191

values of the operands satisfy the relation specified by the operator.192

In the numeric relational operation193

x1 rel-op x2194

if the types or kind type parameters of x1 and x2 differ, their values are converted to the type and kind195

type parameter of the expression x1 + x2 before evaluation.196

A character relational intrinsic operation is interpreted as having the logical value true if and only if the197

values of the operands satisfy the relation specified by the operator.198

For a character relational intrinsic operation, the operands are compared one character at a time in199

order, beginning with the first character of each character operand. If the operands are of unequal200

length, the shorter operand is treated as if it were extended on the right with blanks to the length of201

the longer operand. If both x1 and x2 are of zero length, x1 is equal to x2; if every character of x1 is202

the same as the character in the corresponding position in x2, x1 is equal to x2. Otherwise, at the first203

position where the character operands differ, the character operand x1 is considered to be less than x2204

if the character value of x1 at this position precedes the value of x2 in the collating sequence (4.4.5.4);205

x1 is greater than x2 if the character value of x1 at this position follows the value of x2 in the collating206

sequence.207

NOTE 7.13
The collating sequence depends partially on the processor; however, the result of the use of the
operators .EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character types, the blank padding character is processor dependent.

A bits relational intrinsic operation is interpreted as having the logical value true if and only if the values208

of the operands satisfy the relation specified by the operator.209

For a bits relational intrinsic operation, x1 and x2 are equal if and only if each corresponding bit has210

the same value. If x1 and x2 are not equal, and the leftmost unequal corresponding bit of x1 is 1 and211

x2 is 0 then x1 is greater than x2; otherwise x1 is less than x2.212

7.1.4.5.2 Evaluation of relational intrinsic operations213

Once the interpretation of a relational intrinsic operation is established, the processor may evaluate214

any other expression that is relationally equivalent, provided that the integrity of parentheses in any215

expression is not violated.216

NOTE 7.14
For example, the processor may choose to evaluate the expression

I > J

where I and J are integer variables, as

145

J3/06-312 Revised parts of Clause 7 26 September 2006

NOTE 7.14 (cont.)

J - I < 0

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all217

possible values of their primaries.218

7.1.5 Defined operations219

A defined operation is either a defined unary operation or a defined binary operation. A defined220

unary operation is an operation that has the form defined-unary-op x2 or intrinsic-operator x2 and221

that is defined by a function and a generic interface (4.5.2, 12.4.3.3).222

A function defines the unary operation op x2 if223

(1) the function is specified with a FUNCTION (12.6.2.1) or ENTRY (12.6.2.5) statement that224

specifies one dummy argument d2,225

(2) either226

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERA-227

TOR (op), or228

(b) there is a generic binding (4.5.2) in the declared type of x2 with a generic-spec of229

OPERATOR (op) and there is a corresponding binding to the function in the dynamic230

type of x2,231

(3) the type of d2 is compatible with the dynamic type of x2,232

(4) the type parameters, if any, of d2 match the corresponding type parameters of x2, and233

(5) either234

(a) the rank of x2 matches that of d2 or235

(b) the function is elemental and there is no other function that defines the operation.236

If d2 is an array, the shape of x2 shall match the shape of d2.237

A defined binary operation is an operation that has the form x1 defined-binary-op x2 or x1 intrinsic-238

operator x2 and that is defined by a function and a generic interface.239

A function defines the binary operation x1 op x2 if240

(1) the function is specified with a FUNCTION (12.6.2.1) or ENTRY (12.6.2.5) statement that241

specifies two dummy arguments, d1 and d2,242

(2) either243

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERA-244

TOR (op), or245

(b) there is a generic binding (4.5.2) in the declared type of x1 or x2 with a generic-246

spec of OPERATOR (op) and there is a corresponding binding to the function in the247

dynamic type of x1 or x2, respectively,248

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,249

(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1250

and x2, respectively, and251

(5) either252

(a) the ranks of x1 and x2 match those of d1 and d2 or253

(b) the function is elemental, x1 and x2 are conformable, and there is no other function254

that defines the operation.255

146

26 September 2006 Revised parts of Clause 7 J3/06-312

If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.256

NOTE 7.15
An intrinsic operator may be used as the operator in a defined operation. In such a case, the
generic properties of the operator are extended.

An extension operation is a defined operation in which the operator is of the form defined-unary-op257

or defined-binary-op. Such an operator is called an extension operator. The operator used in an258

extension operation may be such that a generic interface for the operator may specify more than one259

function.260

A defined elemental operation is a defined operation for which the function is elemental (12.8).261

7.1.5.1 Interpretation of a defined operation262

The interpretation of a defined operation is provided by the function that defines the operation. The type,263

type parameters and interpretation of an expression that consists of a defined operation are independent264

of the type and type parameters of the context or any larger expression in which it appears.265

7.1.5.2 Evaluation of a defined operation266

Once the interpretation of a defined operation is established, the processor may evaluate any other267

expression that is equivalent, provided that the integrity of parentheses is not violated.268

Two expressions of derived type are equivalent if their values are equal for all possible values of their269

primaries.270

7.1.6 Evaluation of operands271

[Was 7.1.8.2. Text is unchanged.]272

7.1.7 Integrity of parentheses273

The rules for evaluation specified in subclause 7.1.4 state certain conditions under which a processor274

may evaluate an expression that is different from the one specified by applying the rules given in 7.1.1275

and rules for interpretation specified in subclause 7.1.4. However, any expression in parentheses shall be276

treated as a data entity.277

NOTE 7.16
For example, in evaluating the expression A + (B – C) where A, B, and C are of numeric types, the
difference of B and C shall be evaluated before the addition operation is performed; the processor
shall not evaluate the mathematically equivalent expression (A + B) – C.

7.1.8 Type, type parameters, and shape of an expression278

[Was 7.1.4. Text is unchanged.]279

7.1.9 Conformability rules for elemental operations280

[Was 7.1.5. Text is unchanged].281

147

J3/06-312 Revised parts of Clause 7 26 September 2006

7.1.10 Specification expression282

[Was 7.1.6. Text is unchanged].283

7.1.11 Initialization expression284

[Was 7.1.7. Text is unchanged].285

7.2 Assignment286

[Was 7.4. Text is unchanged.]287

148

