
J3/12-018r1 INTERPRETATION UPDATE PAGES

To: J3

From: Malcolm Cohen

Subject: Interpretation Update Pages: Standing Document 018 (12-018r1)

Date: 2012/08/02

This document contains insertions for every interpretation edit that has been published as a corrigendum to
ISO/IEC 1539-1:2010.

The following pages are intended for insertion into a loose-leaf binder version of 10-007r1. This document needs
to be printed single-sided for this to work.

Most edits are followed by a “making the whole paragraph read” summary; in such summaries deleted text
appears struck-out like this and new text is wavy-underlined

:::
like

::::
this. (NB: This has not been done when it

might be more confusing than helpful.)

This version contains the soon-to-be-published corrigendum 1.

12-018r1 differs from 12-018 in that errors have been corrected on pages 24.1, 328.1, 329.1, and 392.1

i

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0046, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, 4th bullet, [xv]

At the end of the 4th bullet (beginning “Data declaration”),
Insert the following sentence:

An array or an object with a nonconstant length type parameter can have the VALUE attribute.

xv.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0051, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, last bullet, [xvi]

In the last bullet item (beginning “Programs and procedures”),
Before “An impure”
Insert the following sentence:

An argument to a pure procedure can have default INTENT if it has the VALUE attribute.

Interp F08/0037, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, last bullet, [xvi]

In the last bullet item (beginning “Programs and procedures”),
Before “The FUNCTION and SUBROUTINE”
Insert the following sentence:

The PROTECTED attribute can be specified by the procedure declaration statement.

NOTE: This interp also has an edit on page 287.

These two edits make the last bullet paragraph read:

• Programs and procedures:
An empty CONTAINS section is allowed. An internal procedure can be used as an actual argument
or procedure pointer target. ALLOCATABLE and POINTER attributes are used in generic resolution.
Procedureness of a dummy argument is used in generic resolution. An actual argument with the TARGET
attribute can correspond to a dummy pointer. A null pointer or unallocated allocatable can be used to denote
an absent nonallocatable nonpointer optional argument.

:::
An

:::::::::
argument

::
to

::
a
::::
pure

:::::::::
procedure

::::
can

:::::
have

::::::
default

::::::::
INTENT

::
if
::
it
::::
has

::::
the

:::::::
VALUE

::::::::::
attribute. An impure elemental procedure processes array arguments in

array element order.
::::
The

:::::::::::::
PROTECTED

:::::::::
attribute

:::
can

:::
be

::::::::
specified

:::
by

:::
the

:::::::::
procedure

::::::::::
declaration

::::::::::
statement.

The FUNCTION and SUBROUTINE keywords can be omitted from the END statement for a module or
internal subprogram. A line in the program is permitted to begin with a semicolon.

1.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0011 and F08/0033, Status: Corrigendum 1.

Ref: 1.6.2, 1st paragraph, 1st sentence, [24:9-10,11+]

NOTE: Interp F08/0033 also has an edit on pages 312 and 313.

Change the first paragraph as show below and insert new paragraphs afterwards, making the whole subclause
read:

1.6.2 Fortran 2003 compatibility

1 This
::::::
Except

:::
as

:::::::::
identified

::
in

::::
this

::::::::::
subclause,

::::
this part of ISO/IEC 1539 is an upward compatible extension to

the preceding Fortran International Standard, ISO/IEC 1539-1:2004 (Fortran 2003). Any
::::::
Except

::
as

:::::::::
identified

::
in

:::
this

::::::::::
subclause,

::::
any standard-conforming Fortran 2003 program remains standard-conforming under this part of

ISO/IEC 1539.

2
:::::::
Fortran

::::
2003

::::::::
specified

:::::
that

:::::
array

::::::::::::
constructors

::::
and

::::::::
structure

::::::::::::
constructors

::
of

::::::::::
finalizable

::::
type

::::
are

::::::::
finalized.

:::::
This

::::
part

::
of

:::::::::
ISO/IEC

::::
1539

::::::::
specifies

::::
that

:::::
these

::::::::::::
constructors

:::
are

::::
not

::::::::
finalized.

3
:::::::
Fortran

:::::
2003

:::::::::
permitted

:::
an

:::::::::
INTENT

:::::::
(OUT)

:::::::::
argument

:::
of

::
a
:::::
pure

::::::::::
subroutine

:::
to

:::
be

::::::::::::
polymorphic;

:::::
that

::
is
::::

not

:::::::::
permitted

::
by

:::::::::::::::::::::::::
this part of ISO/IEC 1539.

24.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0013, Status: Corrigendum 1.

Ref: 4.5.6.3, 0th and 9th paragraphs, [76:10-,25-26]

Move paragraph 9 of the subclause and Note 4.49 to precede paragraph 1, with the following changes:

Change “the variable is”
to “if the variable is not an unallocated allocatable variable, it is”,
and append new sentence to the end of the paragraph:
“If the variable is an allocated allocatable that would be deallocated by intrinsic assignment, the finalization
occurs before the deallocation.”.

Interp F08/0013, Status: Corrigendum 1.

Ref: 4.5.6.3, 1st paragraph, [76:10]

After “it is finalized”
insert “unless it is the variable in an intrinsic assignment (7.2.1.3) or a component thereof”.

Interp F08/0011, Status: Corrigendum 1.

Ref: 4.5.6.3, 5th and 7th paragraphs, [76:17-18,21-22]

Delete these paragraphs.

Interp F03/0085 and F08/0034, Status: Corrigendum 1.

Ref: 4.5.6.3, 8th paragraph, [76:23-24]

Replace paragraph 8 with:

When a procedure is invoked, an object that becomes argument associated with a nonpointer, nonallocat-
able INTENT (OUT) dummy argument of that procedure is finalized. The finalization caused by INTENT
(OUT) is considered to occur within the invoked procedure; so for elemental procedures, an INTENT(OUT)
argument will be finalized only if a scalar or elemental final subroutine is available, regardless of the rank
of the actual argument.

76.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F03/0085, F08/0011, F08/0013, F08/0034, Status: Corrigendum 1.

Ref: Entire subclause 4.5.6.3

Edit subclause 4.5.6.3 as shown below. Note that the old paragraph 9 (with its NOTE) has been moved to become
paragraph 1, thus renumbering paragraphs 1-8 to become 2-9.

4.5.6.3 When finalization occurs

1 When an intrinsic assignment statement is executed,
:
if the variable

:
is
::::

not
:::
an

:::::::::::
unallocated

::::::::::
allocatable

::::::::
variable,

:
it is finalized after evaluation of expr and before the definition of the variable.

:
If
::::
the

:::::::
variable

:::
is

:::
an

::::::::
allocated

:::::::::
allocatable

:::::
that

::::::
would

::
be

:::::::::::
deallocated

:::
by

:::::::
intrinsic

:::::::::::
assignment,

::::
the

::::::::::
finalization

::::::
occurs

::::::
before

::::
the

:::::::::::
deallocation.

NOTE 4.1

If finalization is used for storage management, it often needs to be combined with defined assignment.

2 When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized

:::::
unless

::
it
::
is
::::
the

:::::::
variable

:::
in

::
an

::::::::
intrinsic

::::::::::
assignment

::::::::::
statement

::::::::
(7.2.1.3)

::
or

::
a

::::::::::
component

:::::::
thereof.

3 A nonpointer, nonallocatable object that is not a dummy argument or@function result is finalized immediately
before it would become undefined due to execution of a RETURN or END statement (16.6.6, item (3)).

4 A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become
undefined due to termination of the BLOCK construct (16.6.6, item (22)).

5 If an executable construct references a function, the result is finalized after execution of the innermost executable
construct containing the reference.

6 If an executable construct references a structure constructor or array constructor, the entity created by the
constructor is finalized after execution of the innermost executable construct containing the reference.

7 If a specification expression in a scoping unit references a function, the result is finalized before execution of the
executable constructs in the scoping unit.

8 If a specification expression in a scoping unit references a structure constructor or array constructor, the entity
created by the constructor is finalized before execution of the executable constructs in the scoping unit.

9 When a procedure is invoked,
::
an

::::::
object

::::
that

::::::::
becomes

::::::::::
argument

:::::::::
associated

:::::
with a nonpointer, nonallocatable

object that is an actual argument corresponding to an INTENT (OUT) dummy argument
:
of
:::::

that
:::::::::
procedure is

finalized.
:::
The

::::::::::
finalization

:::::::
caused

::
by

:::::::::
INTENT

:::::::
(OUT)

::
is

:::::::::
considered

:::
to

:::::
occur

::::::
within

::::
the

:::::::
invoked

::::::::::
procedure;

::
so

:::
for

::::::::
elemental

:::::::::::
procedures,

:::
an

::::::::::::::
INTENT(OUT)

:::::::::
argument

::::
will

::
be

::::::::
finalized

:::::
only

:
if
::
a
::::::
scalar

::
or

:::::::::
elemental

::::
final

::::::::::
subroutine

:
is
:::::::::
available,

:::::::::
regardless

:::
of

:::
the

:::::
rank

::
of

:::
the

::::::
actual

::::::::::
argument.

10 If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with
that object having their pointer association status changed, it is processor dependent whether it is finalized. If it
is finalized, it is processor dependent as to when the final subroutines are called.

76.2

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0052, Status: Corrigendum 1.

Ref: 4.5.7.3, 1st paragraph, [78:4]

Change “as a type-bound”
to “as an accessible type-bound”,
making the whole paragraph read

If a specific type-bound procedure specified in a type definition has the same binding name as a
::
n

::::::::
accessible

type-bound procedure from the parent type then the binding specified in the type definition overrides the
one from the parent type.

78.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0123 and F08/0015, Status: Corrigendum 1.

Ref: 5.5, 4th paragraph, [109:21-23]

Delete “The mapping may ... scoping unit.”,
change “in the outermost inclusive scope in which it appears”
to “; if the outermost inclusive scope in which it appears is not a type definition, it is declared in that scope,
otherwise it is declared in the host of that scope”,
making the whole paragraph read

Any data entity that is not explicitly declared by a type declaration, is not an intrinsic function, is not a
component, and is not accessed by use or host association is declared implicitly to be of the type (and type
parameters) mapped from the first letter of its name, provided the mapping is not null. The mapping for the
first letter of the data entity shall either have been established by a prior IMPLICIT statement or be the default
mapping for the letter. The mapping may be to a derived type that is inaccessible in the local scope if the derived
type is accessible in the host scoping unit. The data entity is treated as if it were declared in an explicit type
declaration in

:
;
:
if the outermost inclusive scope in which it appears

::
is
::::
not

::
a

::::
type

::::::::::
definition,

::
it

::
is

:::::::
declared

:::
in

::::
that

:::::
scope,

:::::::::
otherwise

::
it

::
is

::::::::
declared

::
in

:::
the

::::
host

:::
of

::::
that

:::::
scope. An explicit type specification in a FUNCTION statement

overrides an IMPLICIT statement for the name of the result variable of that function subprogram.

109.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0002, Status: Corrigendum 1.

Ref: 5.6, 5th paragraph, [111:19-20]

Change “type parameters, and shape”
to “kind type parameters, and rank”,
making the whole paragraph read

A namelist group object shall either be accessed by use or host association or shall have its type,
:::
kind type

parameters, and shape
::::
rank specified by previous specification statements or the procedure heading in the same

scoping unit or by the implicit typing rules in effect for the scoping unit. If a namelist group object is typed by
the implicit typing rules, its appearance in any subsequent type declaration statement shall confirm the implied
type and type parameters.

111.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0014 and F08/0016, Status: Corrigendum 1.

Ref: 6.5.3.3.2, 2nd paragraph, [124:4-7]

Replace the bullet list with “finalized by a nonelemental final subroutine.”,
making the whole paragraph read:

An array section with a vector subscript shall not be
:::::::
finalized

:::
by

::
a

::::::::::::
nonelemental

::::
final

:::::::::::
subroutine.

• argument associated with a dummy array that is defined or redefined,
• the data-target in a pointer assignment statement, or
• an internal file.

NOTE: Interp F08/0014 also has an edit on page 295.

Interp F08/0039, Status: Corrigendum 1.

Ref: 6.5.4.4.2, 3rd paragraph, [124:9]

Edit the paragraph as follows:

If a vector subscript has two or more elements with the same value, an array section with that vector
subscript shall not appear in a variable definition context (16.6.7)

:
is

::::
not

::::::::
definable

::::
and

::::
shall

::::
not

:::
be

::::::
defined

::
or

:::::::
become

:::::::::
undefined.

124.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0010, Status: Corrigendum 1.

Ref: 6.7.3.2, 1st paragraph, [130:23]

Append new sentence to the end of the paragraph:

An allocatable variable shall not be deallocated if it or any subobject of it is argument associated with a
dummy argument or construct associated with an associate name.

NOTE: This interp also has an edit on page 131.

130.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0010, Status: Corrigendum 1.

Ref: 6.7.3.3, 1st paragraph, [131:27]

Append new sentence to the end of the paragraph:

A pointer shall not be deallocated if its target or any subobject thereof is argument associated with a
dummy argument or construct associated with an associate name.

NOTE: This interp also has an edit on page 130.

131.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0050, Status: Corrigendum 1.

Ref: 7.1.11, 9th paragraph, [151:13-15]

Edit the paragraph as follows:

If
::
A

:::::::
generic

::::::
entity

:::::::::
referenced

:::
in a specification expression in the specification-part of a module or submodule

includes a reference to a generic entity, that generic entity
::::::
scoping

::::
unit shall have no specific procedures defined

in the module or submodule
:::
that

:::::::
scoping

:::::
unit,

::
or

:::
its

::::
host

:::::::
scoping

:::::
unit, subsequent to the specification expression.

NOTE: This interp also has an edit on page 152.

151.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0050, Status: Corrigendum 1.

Ref: 7.1.12, 3rd paragraph, [152:26-28]

Edit the paragraph as follows:

If
::
A

::::::
generic

::::::
entity

::::::::::
referenced

::
in a constant expression in the specification-part of a module or submodule

includes a reference to a generic entity, that generic entity
:::::::
scoping

::::
unit shall have no specific procedures

defined in the module or submodule
::::
that

:::::::
scoping

::::
unit,

:::
or

::
its

:::::
host

:::::::
scoping

:::::
unit, subsequent to the constant

expression.

NOTE: This interp also has an edit on page 151.

152.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0028, Status: Corrigendum 1.

Ref: 8.1.6.6.4, 1st paragraph, [177:28-29]

In the 4th bullet item,
change “Control is transferred from”
to “A branch occurs”,
making that bullet item:

• Control is transferred from
::
A

:::::::
branch

::::::
occurs within the range of a DO construct and the branch target

statement is neither the end-do nor within the range of the same DO construct.

177.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0023, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:8-9]

Edit the 2nd bullet item as follows:

• A pointer that is referenced
::::
used in an iteration

::::
other

:::::
than

::
as

::::
the

:::::::
pointer

::
in

:::::::
pointer

::::::::::
assignment,

::::::::::
allocation,

::
or

:::::::::::
nullification, either shall be previously pointer associated during

:::::::::::::::
pointer-assigned,

:::::::::
allocated,

::
or

::::::::
nullified

::
in that iteration, or shall not have its pointer association changed during any iteration. A pointer that has
its pointer association changed in more than one iteration has an association status of undefined when the
construct terminates.

Interp F08/0025, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:13-14]

Edit the 3rd bullet item (replacing the 2nd sentence) as follows:

• An allocatable object that is allocated in more than one iteration shall be subsequently deallocated during
the same iteration in which it was allocated. An object that is allocated or deallocated in only one iteration
shall not be deallocated, allocated, referenced, defined, or become undefined in a different iteration.

::
An

:::::::::
allocatable

:::::::
object

::::
that

::
is

::::::::::
referenced,

::::::::
defined,

:::::::::::
deallocated,

::
or

::::
has

:::
its

:::::::::
allocation

:::::::
status,

::::::::
dynamic

:::::
type,

::
or

::
a

:::::::
deferred

:::::
type

:::::::::
parameter

:::::
value

::::::::
inquired

::::::
about,

:::
in

::::
any

::::::::
iteration,

::::::
either

:::::
shall

::
be

::::::::::
previously

::::::::
allocated

:::
in

::::
that

:::::::
iteration

:::
or

:::::
shall

:::
not

:::
be

::::::::
allocated

:::
or

::::::::::
deallocated

:::
in

:::
any

::::::
other

::::::::
iteration.

Interp F08/0022, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:15-16]

Edit the 4th bullet item as follows:

• An input/output statement shall not write data to a file record or position in one iteration and read from
the same record or position in a different iteration.

::
If

::::
data

::::
are

:::::::
written

::
to

::
a
::::
file

::::::
record

::
or

::::::::
position

::
in

::::
one

::::::::
iteration,

::::
that

::::::
record

:::
or

::::::::
position

::
in

::::
that

:::
file

:::::
shall

::::
not

::
be

:::::
read

:::::
from

::
or

:::::::
written

::
to

:::
in

:
a
::::::::

different
:::::::::
iteration.

Interp F08/0022, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:17-18+]

Delete the 5th bullet item (“Records written ... order.”) and make a new paragraph after the list, as follows:

• Records written by output statements in the range of the loop to a sequential access file appear in
the file in an indeterminate order.

:
If
:::::::

records
::::

are
:::::::
written

:::
to

::
a

:::
file

:::::::::
connected

::::
for

:::::::::
sequential

::::::
access

:::
by

:::::
more

:::::
than

::::
one

:::::::::
iteration,

:::
the

::::::::
ordering

:::::::
between

:::::::
records

:::::::
written

:::
by

::::::::
different

:::::::::
iterations

::
is

:::::::::::::
indeterminate.

178.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0048, Status: Corrigendum 1.

Ref: 9.6.4.8, 25th and 26th paragraphs, [227:15,17-18]

NOTE: This interp also has an edit on page 487.

In the 25th paragraph, delete “record positioning”.

In the 26th paragraph,
change “A record positioning edit descriptor, such as TL and TR,”
to “The edit descriptors T and TL”, and
change “record position” to “file position” twice,
making those two paragraphs read:

Because a child data transfer statement does not position the file prior to data transfer, the child data
transfer statement starts transferring data from where the file was positioned by the parent data trans-
fer statement’s most recently processed effective item or record positioning edit descriptor. This is not
necessarily at the beginning of a record.

A record positioning edit descriptor, such as
::::
The

::::
edit

::::::::::
descriptors TL and TR, used on unit by a child data

transfer statement shall not cause the record
:::
file position to be positioned before the record

::
file position at

the time the defined input/output procedure was invoked.

227.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0030, Status: Corrigendum 1.

Ref: 10.3.1, [246:15+]

After constraint C1002, add a new constraint:

C1002A (R1005) An unlimited-format-item shall contain at least one data edit descriptor.

NOTE: This interp also has an edit on page 249.

246.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0030, Status: Corrigendum 1.

Ref: 10.4, 7th and 8th paragraphs, [249:11+,19-20]

Between the 7th and 8th paragraphs, insert a new paragraph 7a:

If format control encounters the rightmost parenthesis of an unlimited format item, format control reverts
to the leftmost parenthesis of that unlimited format item. This reversion of format control has no effect
on the changeable modes (9.5.2).

In the last sentence of the 8th paragraph, change “If ..., the” to “The”, making the whole paragraph read:

If format control encounters the rightmost parenthesis of a complete format specification and another
effective item is not specified, format control terminates. However, if another effective item is specified,
format control then reverts to the beginning of the format item terminated by the last preceding right
parenthesis that is not part of a DT edit descriptor. If there is no such preceding right parenthesis, format
control reverts to the first left parenthesis of the format specification. If any reversion occurs, the reused
portion of the format specification shall contain at least one data edit descriptor. If format control reverts
to a parenthesis that is preceded by a repeat specification, the repeat specification is reused. Reversion
of format control, of itself, has no effect on the changeable modes (9.5.2). If format control reverts to a
parenthesis that is not the beginning of an unlimited-format-item, the

::::
The file is positioned in a manner

identical to the way it is positioned when a slash edit descriptor is processed (10.8.2).

NOTE: This interp also has an edit on page 246.

249.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0001, Status: Corrigendum 1.

Ref: 12.4.3.4.5, 3rd paragraph, 3rd bullet item, [286:4]

After “the other has the POINTER attribute”
insert “and not the INTENT (IN) attribute”,
making the whole paragraph (excluding the constraints that follow it) read:

Two dummy arguments are distinguishable if

• one is a procedure and the other is a data object,

• they are both data objects or known to be functions, and neither is TKR compatible with the other,

• one has the ALLOCATABLE attribute and the other has the POINTER attribute
:::
and

::::
not

:::
the

:::::::::
INTENT

::::
(IN)

::::::::
attribute, or

• one is a function with nonzero rank and the other is not known to be a function.

Interp F08/0053, Status: Corrigendum 1.

Ref: 12.4.3.4.5, constraint C1214 and 5th paragraph, [286:12-13,38]

In constraint C1214, change “two ... identifier”
to “if two procedures have the same generic identifier, their dtv arguments (9.6.4.8.3)”,
making the whole constraint read:

C1214 Within the scope of a defined-io-generic-spec,
:
if two procedures with that

::::
have

::::
the

::::
same generic identifier

:
,

::::
their

::::
dtv

::::::::::
arguments

:::::::::
(9.6.4.8.3) shall be distinguishable.

Insert new UTI after the constraint:

Unresolved Technical Issue C1-F08/0053

This means that in any scope where defined i/o is available, two procedures that have the generic identifier
e.g. fred will need to have dtv arguments that are distinguishable, regardless of the rest of their argument
lists. This would seem to be a serious problem with backwards compatibility.

In the 5th paragraph, change “applies to” to “is consistent with”,
making the whole paragraph read:

Within the scope of a generic name that is the same as the generic name of an intrinsic procedure, the
intrinsic procedure is not accessible by its generic name if the procedures in the interface and the intrinsic
procedure are not all functions or not all subroutines. If a generic invocation applies to

::
is

:::::::::
consistent

::::
with

both a specific procedure from an interface and an accessible intrinsic procedure, it is the specific procedure
from the interface that is referenced.

286.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0037, Status: Corrigendum 1.

Ref: 12.4.3.6, BNF rule R1213, [287:15+]

After the production “or POINTER”
insert a new production “or PROTECTED”,
making the whole rule read:

R1213 proc-attr-spec is access-spec
or proc-language-binding-spec
or INTENT (intent-spec)
or OPTIONAL
or POINTER

::
or PROTECTED
or SAVE

NOTE: This interp also has an edit on page 16.

287.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0014, Status: Corrigendum 1.

Ref: 12.5.2.4, 18th paragraph, [295:3]

Between “If” and “the actual argument is an array section having a vector subscript”,
insert “the procedure is nonelemental and”,
making the paragraph (excluding the notes and constraints that follow it) read:

If
:::
the

:::::::::
procedure

::
is

::::::::::::
nonelemental

::::
and the actual argument is an array section having a vector subscript, the

dummy argument is not definable and shall not have the ASYNCHRONOUS, INTENT (OUT), INTENT
(INOUT), or VOLATILE attributes.

NOTE: This interp also has an edit on page 124.

295.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0033, Status: Corrigendum 1.

Ref: 12.7, after Note 12.47, [312:23+]

Insert new constraint

C1278a An INTENT (OUT) dummy argument of a pure procedure shall not be polymorphic.

NOTE: This interp also has edits on pages 24 and 313.

312.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0033, Status: Corrigendum 1.

Ref: 12.7, after constraint C1284, [313:4+]

Insert new constraint and new note:

C1284a A statement that might result in the deallocation of a polymorphic entity is not permitted in a pure
procedure.

NOTE 12.48x

Apart from the DEALLOCATE statement, this includes intrinsic assignment if the variable has a poly-
morphic allocatable component at any level of component selection that does not involve a pointer com-
ponent but which might involve one or more allocatable components.

NOTE: This interp also has edits on pages 24 and 312.

313.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0049, Status: Corrigendum 1.

Ref: 12.8.1, constraint C1290, [314:4-5]

In C1290, delete “, and shall not ... expression”, making the whole constraint read:

C1290 The result variable of an elemental function shall be scalar,
:::
and shall not have the POINTER or AL-

LOCATABLE attribute, and shall not have a type parameter that is defined by an expression that is not
a constant expression.

NOTE: The editor fixed the grammar in the preceding by changing a comma to “and”.

Interp F08/0024 and F08/0049, Status: Corrigendum 1.

Ref: 12.8.1, after constraint C1290, [314:5+]

Insert new constraints as follows.

C1290a The specification-part of an elemental subprogram shall specify the intents of all of its dummy arguments
that do not have the VALUE attribute.

C1290b In the specification-expr that specifies a type parameter value of the result of an elemental function, an
object designator with a dummy argument of the function as the base object shall appear only as the
subject of a specification inquiry, and that specification inquiry shall not depend on a property that is
deferred.

Interp F08/0018, Status: Corrigendum 1.

Ref: 12.8.1, 12.8.2, 12.8.3

Insert new paragraph at the end of 12.8.1 [314:5+]:

In a reference to an elemental procedure, if any argument is an array, all actual arguments that correspond
to INTENT (OUT) or INTENT (INOUT) dummy arguments shall be arrays. All actual arguments shall
be conformable.

In 12.8.2 [314:9-10], delete the sentence beginning “For those elemental,
making the whole paragraph read:

If a generic name or a specific name is used to reference an elemental function, the shape of the result is the
same as the shape of the actual argument with the greatest rank. If there are no actual arguments or the
actual arguments are all scalar, the result is scalar. For those elemental functions that have more than one
argument, all actual arguments shall be conformable. In the array case, the values of the elements, if any,
of the result are the same as would have been obtained if the scalar function had been applied separately,
in array element order, to corresponding elements of each array actual argument.

In 12.8.3 [314:14-17] delete the sentence beginning “In a reference”,
making the whole paragraph read:

An elemental subroutine has only scalar dummy arguments, but may have array actual arguments. In a
reference to an elemental subroutine, either all actual arguments shall be scalar, or all actual arguments
corresponding to INTENT (OUT) and INTENT (INOUT) dummy arguments shall be arrays of the same
shape and the remaining actual arguments shall be conformable with them. In the case that the actual
arguments corresponding to INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays, the
values of the elements, if any, of the results are the same as would be obtained if the subroutine had been
applied separately, in array element order, to corresponding elements of each array actual argument.

314.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.2.4, 1st sentence, 2nd sentence, [316:24-25]

Change “an optional” to “a”,
and change “, if present, specifies” to “specify”,
making the whole paragraph read:

Some array intrinsic functions are “reduction” functions; that is, they reduce the rank of an array by
collapsing one dimension (or all dimensions, usually producing a scalar result). These functions have an
optional

:
a DIM argument that, if present,

:::
can specifies the dimension to be reduced. The DIM argument

of a reduction function is not permitted to be an optional dummy argument.

NOTE: This interp also has edits on pages 319, 322, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

316.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [319]

In the table lines for ALL and ANY,
change “(MASK [, DIM])” to “(MASK) or (MASK, DIM)”,
making those lines of the table read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
ALL (MASK) or (MASK, DIM) T Reduce logical array by AND operation.
...
ANY (MASK) or (MASK, DIM) T Reduce logical array with OR operation.
...

NOTE: This interp also has edits on pages 316, 322, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

319.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [322]

In the table line for NORM2,
change “(X [, DIM])” to “(X) or (X, DIM)”,
and in the table line for PARITY,
change “(MASK [, DIM])” to “(MASK) or (MASK, DIM)”,
making those lines of the table read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
NORM2 (X) or (X, DIM) T L2 norm of an array.
...
PARITY (MASK) or (MASK, DIM) T Reduce array with .NEQV. operation.
...

NOTE: This interp also has edits on pages 316, 319, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

322.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [323]

In the second table line for THIS IMAGE,
change “(COARRAY [, DIM])” to “(COARRAY) or (COARRAY, DIM)”,
making the line of the table for that function read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
THIS IMAGE () T Index of the invoking image.
THIS IMAGE (COARRAY) or

(COARRAY, DIM)
T Cosubscript(s) for this image.

...

NOTE: This interp also has edits on pages 316, 319, 322, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

323.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.10, [328:2,7,10]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 329, 338, 360, 374, 377, 392, 394 and 395.

Change the subclause heading to “ALL (MASK, DIM) or ALL (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.10 ALL (MASK, DIM) or ALL (MASK)

1 Description. Reduce logical array by AND operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.

DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK. The
corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK has
size zero, and the result has value false if any element of MASK is false.

Case (ii): If MASK has rank one, ALL (MASK, DIM) is equal to ALL (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ALL (MASK, DIM) is equal to ALL (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.]) is false.

Case (ii): If B is the array

[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ALL (B /= C, DIM = 1) is

[true, false, false] and ALL (B /= C, DIM = 2) is [false, false].

328.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.13, [329:6,11,14]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 338, 360, 374, 377, 392, 394 and 395.

Change the subclause heading to “ANY (MASK, DIM) or ANY (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.13 ANY (MASK, DIM) or ANY (MASK)

1 Description. Reduce logical array with OR operation.

2 Class. Transformational function.

3 Arguments.

MASK shall a logical array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the value
false if no elements are true or if MASK has size zero.

Case (ii): If MASK has rank one, ANY (MASK, DIM) is equal to ANY (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ANY (MASK, DIM) is equal to ANY (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is true.

Case (ii): If B is the array

[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ANY (B /= C, DIM = 1) is

[true, false, true] and ANY (B /= C, DIM = 2) is [true, true].

329.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0027, Status: Corrigendum 1.

Ref: 13.7.21, 4th paragraph, [332:25]

Change “CALL ATOMIC REF (I [3], VAL)”
to “CALL ATOMIC REF (VAL, I [3])”,
making the whole paragraph read:

Example. CALL ATOMIC REF (VAL, I [3]) causes VAL to become defined with the value of I on image 3.

332.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0019, Status: Corrigendum 1.

Ref: 13.7.24, 3rd paragraph, [333:12-14]

NOTE: This interp also has an edit on page 334.

For the arguments N1 and N2,
change “ot type integer and nonnegative” to “an integer scalar with a nonnegative value”,
and for argument X,
after “real” insert “; if the function is transformational, X shall be scalar”,
making the whole paragraph read:

Arguments.

N shall be of type integer and nonnegative.

N1 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

N2 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

X shall be of type real
:
;
::
if

:::
the

::::::::
function

::
is

::::::::::::::::
transformational,

::
X

:::::
shall

::
be

::::::
scalar.

333.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0019, Status: Corrigendum 1.

Ref: 13.7.27, 3rd paragraph, [334:12-14]

NOTE: This interp also has an edit on page 333.

For the arguments N1 and N2,
change “ot type integer and nonnegative” to “an integer scalar with a nonnegative value”,
and for argument X,
after “real” insert “; if the function is transformational, X shall be scalar”,
making the whole paragraph read:

Arguments.

N shall be of type integer and nonnegative.

N1 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

N2 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

X shall be of type real
:
;
::
if

:::
the

::::::::
function

::
is

::::::::::::::::
transformational,

::
X

:::::
shall

::
be

::::::
scalar.

334.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.41, 3rd paragraph, DIM argument, [338:31]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 360, 374, 377, 392, 394 and 395.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

338.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0020, Status: Corrigendum 1.

Ref: 13.7.61, 3rd paragraph, VALUE argument, [347:31-32]

Change “relational ... 7.1.5.5.2)” to “the operator == or the operator .EQV.”,
making the whole paragraph read:

VALUE shall be scalar and in type conformance with ARRAY, as specified in Table 7.2 for relational intrinsic
operations (7.1.5.5.2)

:::
the

::::::::
operator

::::
==

::
or

::::
the

::::::::
operator

::::::
.EQV..

347.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.90 and 13.7.91, 3rd paragraph of each, DIM argument, [360:4,25]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 374, 377, 392, 394 and 395.

In both subclauses,
after “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
this makes the paragraph in 13.7.90 read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

and makes the paragraph in 13.7.91 read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of
COARRAY. The corresponding actual argument shall not be an optional dummy argument,

::
a

:::::::::::
disassociated

::::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

360.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.123, heading and 3rd and 4th paragraphs, [374:24,29,31]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 377, 392, 394 and 395.

Change “NORM2 (X [, DIM])” to “NORM2 (X, DIM) or NORM2 (X)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.123 NORM2 (X, DIM) or NORM2 (X)

1 Description. L2 norm of an array.

2 Class. Transformational function.

3 Arguments.

X shall be a real array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of X. The
corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of the same type and type parameters as X. It is scalar if DIM does not
appear; otherwise the result has rank n− 1 and shape [d1, d2, . . . , dDIM-1, dDIM+1, . . . , dn], where n is the rank
of X and [d1, d2, . . . , dn] is the shape of X.

5 Result Value.

Case (i): The result of NORM2 (X) has a value equal to a processor-dependent approximation to the gener-
alized L2 norm of X, which is the square root of the sum of the squares of the elements of X.

Case (ii): The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank
one. Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . sn) of the result is equal to
NORM2 (X(s1, s2, . . . , sDIM−1, :, sDIM+1, . . . sn)).

6 It is recommended that the processor compute the result without undue overflow or underflow.

7 Example. The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately). If X has the value

[
1.0 2.0
3.0 4.0

]
then the

value of NORM2 (X, DIM=1) is [3.162, 4.472] (approximately) and the value of NORM2 (X, DIM=2) is [2.236,
5.0] (approximately).

374.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.128, heading and 3rd and 4th paragraphs, [377:20,25,28]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 392, 394 and 395.

Change “PARITY (MASK [, DIM])” to “PARITY (MASK, DIM) or PARITY (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.128 PARITY (MASK, DIM) or PARITY (MASK)

1 Description. Reduce array with .NEQV. operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]
where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of PARITY (MASK) has the value true if an odd number of the elements of MASK are
true, and false otherwise.

Case (ii): If MASK has rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the
value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of PARITY (MASK, DIM) is equal to
PARITY (MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of PARITY ([T, T, T, F]) is true if T has the value true and F has the value false.

Case (ii): If B is the array

[
T T F
T T T

]
, where T has the value true and F has the value false, then

PARITY (B, DIM=1) has the value [F, F, T] and PARITY (B, DIM=2) has the value [F, T].

377.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0021, Status: Corrigendum 1.

Ref: 13.7.160, 3rd paragraph, [390:6]

Around “has any deferred type parameters” insert “is unlimited polymorphic or” and a comma,
making the whole paragraph read:

Arguments.

A shall be a scalar or array of any type. If it is polymorphic it shall not be an undefined pointer.
If it

:
is
:::::::::::::::::::::

unlimited polymorphic
:::
or has any deferred type parameters, it shall not be an unallocated

allocatable variable or a disassociated or undefined pointer.

KIND (optional) shall be a scalar integer constant expression.

390.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.165, heading and 3rd paragraph, [392:6,11]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 394 and 395.

Change “THIS IMAGE (COARRAY [, DIM])”
to “THIS IMAGE (COARRAY) or THIS IMAGE(COARRAY, DIM)”,
in paragraph 3, DIM argument, delete “(optional)”,
the result is shown below; the editor has made additional changes:
— deleted the mistaken paragraph 7 marker, — added commas to the heading.

13.7.165 THIS IMAGE (), THIS IMAGE (COARRAY), or
THIS IMAGE (COARRAY, DIM)

1 Description. Cosubscript(s) for this image.

2 Class. Transformational function.

3 Arguments.

COARRAY shall be a coarray of any type. If it is allocatable it shall be allocated.

DIM shall be a default integer scalar. Its value shall be in the range 1 ≤ DIM ≤ n, where n is the corank
of COARRAY. The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. Default integer. It is scalar if COARRAY does not appear or DIM is present; otherwise,
the result has rank one and its size is equal to the corank of COARRAY.

5 Result Value.

Case (i): The result of THIS IMAGE () is a scalar with a value equal to the index of the invoking image.

Case (ii): The result of THIS IMAGE (COARRAY) is the sequence of cosubscript values for COARRAY that
would specify the invoking image.

Case (iii): The result of THIS IMAGE (COARRAY, DIM) is the value of cosubscript DIM in the sequence of
cosubscript values for COARRAY that would specify the invoking image.

6 Examples. If A is declared by the statement
REAL A (10, 20) [10, 0:9, 0:*]

then on image 5, THIS IMAGE () has the value 5 and THIS IMAGE (A) has the value [5, 0, 0]. For the same
coarray on image 213, THIS IMAGE (A) has the value [3, 1, 2].

The following code uses image 1 to read data. The other images then copy the data.

IF (THIS_IMAGE()==1) READ (*,*) P

SYNC ALL

P = P[1]

NOTE 13.2

For an example of a module that implements a function similar to the intrinsic function THIS IMAGE, see
subclause C.10.1.

392.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.171, 3rd paragraph, DIM argument, [394:27]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 392 and 395.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

394.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.172, 3rd paragraph, DIM argument, [395:11]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 392 and 394.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank
of COARRAY. The corresponding actual argument shall not be an optional dummy argument

:
,
:
a

:::::::::::
disassociated

::::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

395.1

INTERPRETATION UPDATE PAGES J3/12-018r1

Interp F08/0009, Status: Corrigendum 1.

Ref: 14.9, 1st paragraph, [406:15+]

Add a new item after the second item of the bulleted list,
making the whole paragraph read:

The inquiry function IEEE SUPPORT DATATYPE can be used to inquire whether IEEE arithmetic is supported
for a particular kind of real. Complete conformance with IEC 60559:1989 is not required, but

• the normal numbers shall be exactly those of an IEC 60559:1989 floating-point format,

• for at least one rounding mode, the intrinsic operations of addition, subtraction and multiplication shall
conform whenever the operands and result specified by IEC 60559:1989 are normal numbers,

•
:::
the

:::::
IEEE

::::::::
function

::::
abs

::::
shall

:::
be

::::::::
provided

:::
by

::::::::::::::::::::::::
the intrinsic function ABS,

• the IEEE operation rem shall be provided by the function IEEE REM, and

• the IEEE functions copysign, scalb, logb, nextafter, and unordered shall be provided by the functions IEEE -
COPY SIGN, IEEE SCALB, IEEE LOGB, IEEE NEXT AFTER, and IEEE UNORDERED, respectively,

for that kind of real.

406.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0124, Status: Corrigendum 1.

Ref: 16.6.6, 1st paragraph, [455:4-10]

Replace the entire item (1) by:

(1) When a scalar variable of intrinsic type becomes defined, all totally associated variables of different
type become undefined. When a double precision scalar variable becomes defined, all partially
associated scalar variables become undefined. When a scalar variable becomes defined, all partially
associated double precision scalar variables become undefined.

455.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F03/0048, Status: Corrigendum 1.

Ref: C.6.2, 1st paragraph, [487:28]

NOTE: This interp also has an edit on page 227.

Delete “record positioning”, making the whole paragraph read:

Data transfer statements affect the positioning of an external file. In Fortran 77, if no error or end-of-file
condition exists, the file is positioned after the record just read or written and that record becomes the preceding
record. This part of ISO/IEC 1539 contains the record positioning ADVANCE= specifier in a data transfer
statement that provides the capability of maintaining a position within the current record from one formatted
data transfer statement to the next data transfer statement. The value NO provides this capability. The value
YES positions the file after the record just read or written. The default is YES.

487.1

J3/12-018r1 INTERPRETATION UPDATE PAGES

Interp F08/0036, Status: Corrigendum 1.

Ref: C.13.3.6, 3rd paragraph, [527:18]

Insert a superscript “2” to square the absolute value of Xi,
making the whole paragraph read:

The L2-norm of vector X, defined as
√∑n

i=1 |Xi|2, can be formed using the Fortran expression NORM2 (X).

527.1

	Fortran 2003 compatibility

