
14-165 Protected Type 14-165

1 {This shows how the new subclause in the proposal would be typeset. It is followed by other minor edits. Five1

additional lines would be added, four words and a cross reference would be added to other lines, one line deleted,2

three constraints deleted, and two constraints added, in other subclauses, for a net increase of 37 lines of normative3

text and nine lines of notes. The new constraint C441a might be considered to be redundant to C550, and if so4

need not be added. The last two exceptions in C441b are not needed if the revision of variable definition context5

proposed in 14-139r1 is adopted. With those changes, the net increase would be 34 lines of normative text and6

nine lines of notes.}7

2 [67:1- before subclause 4.5.3] Insert a subclause]8

4.5.2.5 PROTECTED attribute for types9

1 The PROTECTED attribute for types imposes restrictions on the contexts in which objects of those types may10

appear. A type with the PROTECTED attribute is a protected type.11

2 Except within a module where a protected type is defined, or a descendant of that module, a nonpointer variable12

of that type, and the target of a pointer of that type, are not definable.13

C441a (R427) The PROTECTED attribute shall be specified only in the specification part of a module.14

C441b (R427) Except within the module where a protected type is defined, or a descendant of that module,15

a variable of that type, or that has a subobject of that type, shall not appear in a variable definition16

context (16.6.7), except as17

• the variable in a defined assignment, provided the subroutine that defines the assignment is defined in the18

module where the type is defined, or a descendant of that module,19

• the variable in a statement specifier, provided the variable is required to be of a protected type that is20

defined in an intrinsic module,21

• an actual argument corresponding to a dummy argument that has INTENT(INOUT),22

• an allocate-object in an ALLOCATE statement without a SOURCE= specifier, or in a DEALLOCATE23

statement,24

• a data-pointer-object in a pointer-assignment-stmt, or25

• a pointer-object in a nullify-stmt.26

C441c (R427) Except within the module where a protected type is defined, or a descendant of that module, a27

nonpointer subobject of a variable of that type shall not appear28

• in a variable definition context (16.6.7),29

• as an actual argument corresponding to a dummy argument that does not explicitly have INTENT(IN),30

• as the data-target in a pointer assignment statement,31

• as the expr corresponding to a component with the POINTER attribute in a structure-constructor,32

• as an actual argument corresponding to a dummy argument with the POINTER attribute, or33

• as an actual argument in a reference to the C LOC function from the ISO C BINDING intrinsic module.34

C441d (R427) Except within the module where a protected type is defined, or a descendant of that module, a35

pointer subobject of a variable of that type shall not appear in a pointer association context (16.6.8),36

or as an actual argument corresponding to a pointer dummy argument that does not explicitly have37

INTENT(IN).38

C441e (R425) If EXTENDS appears and the type being defined has a potential subobject component of protected39

type, its parent type shall either be a protected type, or shall have a potential subobject component of a40

protected type, and that type shall be defined in the same module as the type of the protected potential41

subobject component.42

3 The value of the actual argument associated with the CPTR argument of the C F POINTER subroutine from43

67



14-165 Protected Type 14-165

the ISO C BINDING intrinsic module shall not be the C address of an object of protected type, unless the object1

is type compatible with the actual argument corresponding to the FPTR argument.2

NOTE 4.22b
One can use a pointer to examine objects of protected type, for example to traverse a list or tree, but not
to change their values or the pointer associations of their subobjects.

NOTE 4.22c
Constraint C441e ensures that protection cannot be subverted using polymorphism.

NOTE 4.22d
The target of a pointer subobject is not a subobject (6.4.2). Therefore, although it is not possible to change
the pointer association status of a pointer subobject of an object of protected type, it is possible to associate
a pointer with the same target, or to change the value of its target.

4 [6:19+] Define a new term3

5 1.3.35.2a4

potential subobject component5

a nonpointer component, or a potential subobject component of a nonpointer component6

6 [63:28+ R427] Insert an alternative to R427:7

or PROTECTED8

7 [64:5 C435] After “ABSTRACT” insert “or PROTECTED”.9

8 [64:9-11 C438] Delete constraint C438.10

9 [103:2 C555] Replace “procedure pointer or variable” with “derived type definition, procedure pointer, or variable”.11

10 [129:11+ C644+] Insert a constraint:12

C644a (R630) If any allocate-object is unlimited polymorphic, type-spec shall not specify a protected type or a13

type that has a potential subobject component of protected type, and the declared type of source-expr14

shall not be a protected type or a type that has a potential subobject component of protected type.15

11 [160:10+ C716+] Insert a constraint:16

C716a (R733) If data-pointer-object is unlimited polymorphic, the declared type of data-target shall not be a17

protected type, nor shall it have a potential subobject component of protected type.18

12 [279:29+ 12.5.2.2p1(2)(c)+] Insert a list item19

(c′) is of a protected type, or has a subobject of a protected type,20

13 [402:15 13.8.2.16p1] Replace “derived type” with “protected derived type (4.5.2.5)”.21

14 [402:16-17 13.8.2.16p1] Delete “Therefore it does not have the BIND attribute, and is not a sequence type.”22

{It was proposed to add this to TS 18508, but the proposal was rejected. Should we be consistent?}23

15 [403:24-29 C1303, C1304] Delete constraints C1303 and C1304.24

16 [436:4,6 C1501, C1503] Combine the constraints and add ABSTRACT and PROTECTED:25

68



14-165 Protected Type 14-165

C1501 (R425) A derived type with the BIND attribute shall not have the ABSTRACT, EXTENDS, SEQUENCE1

or PROTECTED attribute.2

69


