
TS 18508 Additional Parallel
Features in Fortran

WG5/N2027

22nd August 2014 8:01

Draft document for WG5 Ballot

(Blank page)

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

Contents

1 Scope . 1

2 Normative references . 3

3 Terms and definitions . 5

4 Compatibility . 7
4.1 New intrinsic procedures . 7
4.2 Fortran 2008 compatibility . 7

5 Teams of images . 9
5.1 Introduction . 9
5.2 TEAM TYPE . 9
5.3 CHANGE TEAM construct . 9
5.4 Image selectors . 11
5.5 FORM TEAM statement . 12
5.6 SYNC TEAM statement . 12
5.7 FAIL IMAGE statement . 13
5.8 STAT FAILED IMAGE . 13

6 Events . 15
6.1 Introduction . 15
6.2 EVENT TYPE . 15
6.3 EVENT POST statement . 15
6.4 EVENT WAIT statement . 16

7 Intrinsic procedures . 17
7.1 General . 17
7.2 Atomic subroutines . 17
7.3 Collective subroutines . 18
7.4 New intrinsic procedures . 19

7.4.1 ATOMIC ADD (ATOM, VALUE [, STAT]) . 19
7.4.2 ATOMIC AND (ATOM, VALUE [, STAT]) . 19
7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW [, STAT]) 19
7.4.4 ATOMIC FETCH ADD (ATOM, VALUE, OLD [, STAT]) 20
7.4.5 ATOMIC FETCH AND (ATOM, VALUE, OLD [, STAT]) 20
7.4.6 ATOMIC FETCH OR (ATOM, VALUE, OLD [, STAT]) 20
7.4.7 ATOMIC FETCH XOR (ATOM, VALUE, OLD [, STAT]) 21
7.4.8 ATOMIC OR (ATOM, VALUE [, STAT]) . 21
7.4.9 ATOMIC XOR (ATOM, VALUE [, STAT]) . 21
7.4.10 CO BROADCAST (A, SOURCE IMAGE [, STAT, ERRMSG]) 22
7.4.11 CO MAX (A [, RESULT IMAGE, STAT, ERRMSG]) . 22
7.4.12 CO MIN (A [, RESULT IMAGE, STAT, ERRMSG]) . 23
7.4.13 CO REDUCE (A, OPERATOR [, RESULT IMAGE, STAT, ERRMSG]) 23
7.4.14 CO SUM (A [, RESULT IMAGE, STAT, ERRMSG]) . 24
7.4.15 EVENT QUERY (EVENT, COUNT [, STAT, ERRMSG]) 24
7.4.16 FAILED IMAGES ([TEAM, KIND]) . 25

i

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

7.4.17 GET TEAM ([LEVEL]) . 26
7.4.18 IMAGE STATUS (IMAGE, [TEAM]) . 26
7.4.19 STOPPED IMAGES ([TEAM, KIND]) . 27
7.4.20 TEAM ID ([TEAM]) . 27

7.5 Modified intrinsic procedures . 28
7.5.1 ATOMIC DEFINE and ATOMIC REF . 28
7.5.2 IMAGE INDEX . 28
7.5.3 MOVE ALLOC . 28
7.5.4 NUM IMAGES . 29
7.5.5 THIS IMAGE . 29

8 Required editorial changes to ISO/IEC 1539-1:2010(E) . 31
8.1 General . 31
8.2 Edits to Introduction . 31
8.3 Edits to clause 1 . 31
8.4 Edits to clause 2 . 32
8.5 Edits to clause 4 . 33
8.6 Edits to clause 6 . 33
8.7 Edits to clause 8 . 34
8.8 Edits to clause 9 . 36
8.9 Edits to clause 13 . 36
8.10 Edits to clause 16 . 40
8.11 Edits to annex A . 41
8.12 Edits to annex C . 41

Annex A (informative) Extended notes . 43
A.1 Clause 5 notes . 43

A.1.1 Example using three teams . 43
A.1.2 Example involving failed images . 43
A.1.3 Accessing coarrays in sibling teams . 45
A.1.4 Reducing the codimension of a coarray . 46

A.2 Clause 6 notes . 47
A.2.1 EVENT QUERY example . 47
A.2.2 EVENT QUERY example that tolerates image failure . 48
A.2.3 EVENTS example . 50

A.3 Clause 7 notes . 51
A.3.1 Collective subroutine examples . 51
A.3.2 Atomic memory consistency . 51

ii

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which represents
an agreement between the members of the joint technical committee and is accepted for publication if it is
approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is reviewed
again after a further three years, at which time it must either be transformed into an International Standard or
be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18508:2015 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

iii

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

Introduction

The system for parallel programming in Fortran, as standardized by ISO/IEC 1539-1:2010, defines simple syntax
for access to data on another image of a program, a set of synchronization statements for controlling the ordering
of execution segments between images, and collective allocation and deallocation of memory on all images.

The existing system for parallel programming does not provide for an environment where a subset of the images
can easily work on part of an application while not affecting other images in the program. This complicates
development of independent parts of an application by separate teams of programmers. The existing system
does not provide a mechanism for a processor to identify what images have failed during execution of a program.
This adversely affects the resilience of programs executing on large systems. The synchronization primitives
available in the existing system do not provide a convenient mechanism for ordering execution segments on
different images without requiring that those images arrive at a synchronization point before either is allowed to
proceed. This introduces unnecessary inefficiency into programs. Finally, the existing system does not provide
intrinsic procedures for commonly used collective and atomic memory operations. Intrinsic procedures for these
operations can be highly optimized for the target computational system, providing significantly improved program
performance.

This Technical Specification extends the facilites of Fortran for parallel programming to provide for grouping the
images of a program into nonoverlapping teams that can more effectively execute independently parts of a larger
problem, for the processor to indicate which images have failed during execution and allow continued execution of
the program on the remaining images, for a system of events that can be used for fine grain ordering of execution
segments, and for sets of collective and atomic memory operation subroutines that can provide better performance
for specific operations involving more than one image.

The facility specified in this Technical Specification is a compatible extension of Fortran as standardized by
ISO/IEC 1539-1:2010, ISO/IEC 1539-1:2010/Cor 1:2012, and ISO/IEC 1539-1:2010/Cor 2:2013.

It is the intention of ISO/IEC JTC 1/SC22 that the semantics and syntax specified by this Technical Specification
be included in the next revision of ISO/IEC 1539-1 without change unless experience in the implementation
and use of this feature identifies errors that need to be corrected, or changes are needed to achieve proper
integration, in which case every reasonable effort will be made to minimize the impact of such changes on existing
implementations.

This Technical Specification is organized in 8 clauses:

Scope Clause 1
Normative references Clause 2
Terms and definitions Clause 3
Compatibility Clause 4
Teams of images Clause 5
Events Clause 6
Intrinsic procedures Clause 7
Required editorial changes to ISO/IEC 1539-1:2010(E) Clause 8

It also contains the following nonnormative material:

Extended notes Annex A

iv

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

1 Scope1

This Technical Specification specifies the form and establishes the interpretation of facilities that extend the For-2

tran language defined by ISO/IEC 1539-1:2010, ISO/IEC 1539-1:2010/Cor 1:2012, and ISO/IEC 1539-1:2010/Cor3

2:2013. The purpose of this Technical Specification is to promote portability, reliability, maintainability, and ef-4

ficient execution of parallel programs written in Fortran, for use on a variety of computing systems.5

This Technical Specification does not specify formal data consistency or progress models. Some level of asyn-6

chronous progress is required to ensure that the examples in clauses 6 and 7 are conforming. Developing the7

formal data consistency and progress models is left until the integration of these facilities into ISO/IEC 1539-1.8

1

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1

(Blank page)2

3

2

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

2 Normative references1

The following referenced standards are indispensable for the application of this document. For dated references,2

only the edition cited applies. For undated references, the latest edition of the referenced document (including3

any amendments) applies.4

ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran—Part 1:Base language5

ISO/IEC 1539-1:2010/Cor 1:2012, Information technology—Programming languages—Fortran—Part 1:Base lan-6

guage TECHNICAL CORRIGENDUM 17

ISO/IEC 1539-1:2010/Cor 2:2013, Information technology—Programming languages—Fortran—Part 1:Base lan-8

guage TECHNICAL CORRIGENDUM 29

3

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1

(Blank page)2

3

4

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

3 Terms and definitions1

For the purposes of this document, the terms and definitions given in ISO/IEC 1539-1:2010 and the following2

apply. The intrinsic module ISO FORTRAN ENV is extended by this Technical Specification.3

3.14

asynchronous progress5

ability of images to define or reference coarrays without requiring the images on which the data reside to execute6

any particular statements7

3.28

collective subroutine9

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and10

assign the computed value on one or all of them (7.3)11

3.312

team13

set of images that can readily execute independently of other images (5.1)14

3.3.115

current team16

the team specified in the CHANGE TEAM statement of the innermost executing CHANGE TEAM construct,17

or the initial team if no CHANGE TEAM construct is active (5.1)18

3.3.219

initial team20

the current team when the program began execution (5.1)21

3.3.322

parent team23

team from which the current team was formed by executing a FORM TEAM statement (5.1)24

3.3.425

team identifier26

integer value identifying a team (5.1)27

3.428

failed image29

an image for which references or definitions of a variable on the image fail when that variable should be accessible,30

or that has not initiated normal termination and fails to respond during the execution of an image control31

statement or a reference to a collective subroutine (5.8)32

3.533

event variable34

scalar variable of type EVENT TYPE (6.2) in the intrinsic module ISO FORTRAN ENV35

3.636

team variable37

scalar variable of type TEAM TYPE (5.2) in the intrinsic module ISO FORTRAN ENV38

5

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1

(Blank page)2

3

6

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

4 Compatibility1

4.1 New intrinsic procedures2

This Technical Specification defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010.3

Therefore, a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under4

this Technical Specification if it invokes an external procedure having the same name as one of the new intrinsic5

procedures, unless that procedure is specified to have the EXTERNAL attribute.6

4.2 Fortran 2008 compatibility7

This Technical Specification specifies an upwardly compatible extension to ISO/IEC 1539-1:2010, as modified by8

ISO/IEC 1539-1:2010/Cor 1:2012 and ISO/IEC 1539-1:2010/Cor 2:2013.9

7

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1

(Blank page)2

3

8

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

5 Teams of images1

5.1 Introduction2

A team of images is a set of images that can readily execute independently of other images. Syntax and semantics3

of image-selector (R624 in ISO/IEC 1539-1:2010) have been extended to determine how cosubscripts are mapped4

to image indices for both sibling and ancestor team references. Initially, the current team consists of all the5

images and this is known as the initial team. Except for the initial team, every team has a unique parent team.6

A team is divided into new teams by executing a FORM TEAM statement. Each new team is identified by an7

integer value known as its team identifier. Information about the team to which the current image belongs can8

be determined by the processor from the collective value of the team variables on the images of the team.9

The current team is the team specified in the CHANGE TEAM statement of the innermost executing CHANGE10

TEAM construct, or the initial team if no CHANGE TEAM construct is active.11

A nonallocatable coarray that is neither a dummy argument, host associated with a dummy argument, declared12

as a local variable of a subprogram, nor declared in a BLOCK construct is established in the initial team. An13

allocated allocatable coarray is established in the team in which it was allocated. An unallocated allocatable14

coarray is not established. An associating coarray is established in the team of its CHANGE TEAM block. A15

nonallocatable coarray that is a dummy argument or host associated with a dummy argument is established in16

the team in which the procedure was invoked. A nonallocatable coarray that is a local variable of a subprogram17

or host associated with a local variable of a subprogram is established in the team in which the procedure was18

invoked. A nonallocatable coarray declared in a BLOCK construct is established in the team in which the19

BLOCK statement was executed. A coarray dummy argument is not established in any ancestor team even if20

the corresponding actual argument is established in one or more of them.21

5.2 TEAM TYPE22

TEAM TYPE is a derived type with private components. It is an extensible type with no type parameters. Each23

component is fully default initialized. A scalar variable of this type describes a team. TEAM TYPE is defined24

in the intrinsic module ISO FORTRAN ENV.25

A scalar variable of type TEAM TYPE is a team variable. The default initial value of a team variable shall not26

represent any valid team.27

5.3 CHANGE TEAM construct28

The CHANGE TEAM construct changes the current team to which the executing image belongs.29

R501 change-team-construct is change-team-stmt30

block31

end-change-team-stmt32

R502 change-team-stmt is [team-construct-name:] CHANGE TEAM (team-variable33

[, coarray-association-list] [, sync-stat-list])34

R503 coarray-association is codimension-decl => coselector-name35

R504 end-change-team-stmt is END TEAM [(sync-stat-list)] [team-construct-name]36

9

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

R505 team-variable is scalar-variable1

C501 (R501) A branch within a CHANGE TEAM construct shall not have a branch target that is outside the2

construct.3

C502 (R501) A RETURN statement shall not appear within a CHANGE TEAM construct.4

C503 (R501) An exit-stmt or cycle-stmt within a CHANGE TEAM construct shall not belong to an outer5

construct.6

C504 (R501) If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corres-7

ponding end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a8

change-team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt9

shall not specify a team-construct-name.10

C505 (R503) The coarray-name in the codimension-decl shall not be the same as any coselector-name in the11

change-team-stmt or the same as a coarray-name in another codimension-decl in the change-team-stmt .12

C506 (R505) A team-variable shall be of the type TEAM TYPE (5.2).13

C507 (R502) No coselector-name shall appear more than once in a change-team-stmt .14

A coselector name identifies a coarray. The coarray shall be established when the CHANGE TEAM statement15

begins execution.16

The team-variable shall have been defined by execution of a FORM TEAM statement in the team that executes17

the CHANGE TEAM statement or be the value of a team variable for the initial team. The values of the team-18

variables on the images of the team shall be those defined by execution of the same FORM TEAM statement19

on all the images of the team. The current team for the statements of the CHANGE TEAM block is the team20

specified by the value of the team-variable. The current team is not changed by a redefinition of the team variable21

during execution of the CHANGE TEAM construct.22

A codimension-decl in a coarray-association associates a coarray with an established coarray during the execution23

of the block. This coarray is an associating entity (8.1.3.2, 8.1.3.3, 16.5.1.6 of ISO/IEC 1539-1:2010). Its name is24

an associate name that has the scope of the construct. It has the declared type, dynamic type, type parameters,25

rank, and bounds of the established coarray. Its corank and cobounds are those specified in the codimension-decl .26

Within a CHANGE TEAM construct, a coarray that does not appear in a coarray-association has the corank27

and cobounds that it had when it was established.28

An allocatable coarray that was allocated when execution of a CHANGE TEAM construct began shall not be29

deallocated during the execution of the construct. An allocatable coarray that is allocated when execution of30

a CHANGE TEAM construct completes is deallocated if it was not allocated when execution of the construct31

began.32

The CHANGE TEAM and END TEAM statements are image control statements. All nonfailed images of the33

current team shall execute the same CHANGE TEAM statement. When a CHANGE TEAM statement is34

executed, there is an implicit synchronization of all nonfailed images of the team containing the executing image35

that is identified by team-variable. On each nonfailed image of the team, execution of the segment following the36

statement is delayed until all the other nonfailed images of the team have executed the same statement the same37

number of times. When a CHANGE TEAM construct completes execution, there is an implicit synchronization38

of all nonfailed images in the current team. On each nonfailed image of the team, execution of the segment39

following the END TEAM statement is delayed until all the other nonfailed images of the team have executed40

the same construct the same number of times.41

NOTE 5.1

Deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM
construct, but is allocated at the end of execution of the construct, occurs even for allocatable coarrays

10

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

NOTE 5.1 (cont.)

with the SAVE attribute.

5.4 Image selectors1

The syntax rule R624 image-selector in subclause 6.6 of ISO/IEC 1539-1:2010 is replaced by:2

R624 image-selector is lbracket [team-variable ::] cosubscript-list3

[, TEAM ID = scalar-int-expr] rbracket4

C508 (R624) team-variable and TEAM ID = shall not both appear in the same image-selector .5

If team-variable appears in a coarray designator, it shall be defined with a value that represents an ancestor of6

the current team. The coarray shall be established in that team or an ancestor of that team and the cosubscripts7

determine an image index in that team.8

If TEAM ID = appears in a coarray designator, the scalar-int-expr shall be defined with the value of a team9

identifier for one of the teams that were formed by the execution of the FORM TEAM statement for the current10

team. The coarray shall be established in an ancestor of the current team and the cosubscripts determine an11

image index in the team identified by TEAM ID.12

NOTE 5.2

The image selector in b[i] identifies the current team. The image selector in b[i,team_id=1] identifies a
sibling team. The image selector in b[ancestor::i] identifies the team ancestor.

NOTE 5.3

In the following code, the vector a of length N*P is distributed over P images. Each has an array A(0:N+1)
holding its own values of a and halo values from its two neighbors. The images are divided into two teams
that execute independently but periodically exchange halo data. Before the data exchange, all the images
(of the initial team) must be synchronized and for the data exchange the coindices of the initial team are
needed.

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(TEAM_TYPE) :: INITIAL, BLOCK

REAL :: A(0:N+1)[*]

INTEGER :: ME, P2

INITIAL = GET_TEAM()

ME = THIS_IMAGE()

P2 = NUM_IMAGES()/2

FORM TEAM(1+(ME-1)/P2,BLOCK)

CHANGE TEAM(BLOCK,B[*]=>A)

DO

! Iterate within team

:

! Halo exchange across team boundary

SYNC TEAM(INITIAL)

IF(ME==P2) B(N+1) = A(1)[INITIAL::ME+1]

IF(ME==P2+1) B(0) = A(N)[INITIAL::ME-1]

SYNC TEAM(INITIAL)

END DO

END TEAM

11

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

5.5 FORM TEAM statement1

R506 form-team-stmt is FORM TEAM (team-id , team-variable2

[, form-team-spec-list])3

R507 team-id is scalar-int-expr4

R508 form-team-spec is NEW INDEX = scalar-int-expr5

or sync-stat6

C509 (R506) No specifier shall appear more than once in a form-team-spec-list .7

The FORM TEAM statement defines team-variable for a new team. The value of team-id specifies the new team8

to which the executing image will belong. The value of team-id shall be positive and is the same for all images9

that are members of the same team.10

The value of the scalar-int-expr in a NEW INDEX= specifier specifies the image index that the executing image11

will have in the team specified by team-id . It shall be positive and less than or equal to the number of images12

in the team. Each image with the same value for team-id shall have a different value for the NEW INDEX=13

specifier. If the NEW INDEX= specifier does not appear, the image index that the executing image will have14

in the team specified by team-id is a processor-dependent value that shall be positive and not greater than the15

number of images in the team.16

The FORM TEAM statement is an image control statement. If the FORM TEAM statement is executed on one17

image, it shall be executed by the same statement on all nonfailed images of the current team. When a FORM18

TEAM statement is executed, there is an implicit synchronization of all nonfailed images in the current team.19

On these images, execution of the segment following the statement is delayed until all other nonfailed images in20

the current team have executed the same statement the same number of times. If an error condition other than21

detection of a failed image occurs, the team variable becomes undefined.22

NOTE 5.4

Executing the statement

FORM TEAM (2-MOD(ME,2), ODD_EVEN)

with ME an integer with value THIS IMAGE() and ODD_EVEN of type TEAM TYPE, divides the current
team into two teams according to whether the image index is even or odd.

NOTE 5.5

When executing on P 2 images with corresponding coarrays on each image representing parts of a larger
array spread over a P by P square, the following code establishes teams for the rows with image indices
equal to the column indices.

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(TEAM_TYPE) :: ROW

REAL :: A[P,*]

INTEGER :: ME(2)

ME(:) = THIS_IMAGE(A)

FORM TEAM(ME(1),ROW,NEW_INDEX=ME(2))

5.6 SYNC TEAM statement23

R509 sync-team-stmt is SYNC TEAM (team-variable [, sync-stat-list])24

The SYNC TEAM statement is an image control statement. The values of the team-variables on the images25

of the team shall be those defined by execution of the same FORM TEAM statement on all the images of the26

12

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

team or shall be the values of the team variables for the initial team. Execution of a SYNC TEAM statement1

performs a synchronization of the executing image with each of the other nonfailed images of the team specified2

by team-variable. Execution on an image, M, of the segment following the SYNC TEAM statement is delayed3

until each nonfailed other image of the specified team has executed a SYNC TEAM statement specifying the4

same team as many times as has image M. The segments that executed before the SYNC TEAM statement on5

an image precede the segments that execute after the SYNC TEAM statement on another image.6

NOTE 5.6

A SYNC TEAM statement performs a synchronization of images of a particular team whereas a SYNC
ALL statement performs a synchronization of all images of the current team.

5.7 FAIL IMAGE statement7

R510 fail-image-stmt is FAIL IMAGE [stop-code]8

Execution of a FAIL IMAGE statement causes the executing image to behave as if it has failed. No further9

statements are executed by that image.10

When an image executes a FAIL IMAGE statement, its stop code, if any, is made available in a processor-11

dependent manner.12

NOTE 5.7

The FAIL IMAGE statement allows a program to test a recovery algorithm without experiencing an actual
failure.

On a processor that does not have the ability to detect that an image has failed, execution of a FAIL
IMAGE statement might provide a simulated failure environment that provides debug information.

In a piece of code that executes about once a second, invoking this subroutine on an image

SUBROUTINE FAIL

REAL :: X

CALL RANDOM_NUMBER(X)

IF (X<0.001) FAIL IMAGE "Subroutine FAIL called"

END SUBROUTINE FAIL

will cause that image to have an independent 1/1000 chance of failure every second if the random number
generators on different images are independent.

5.8 STAT FAILED IMAGE13

If the processor has the ability to detect that an image has failed, the value of the default integer scalar constant14

STAT FAILED IMAGE is positive; otherwise, the value of STAT FAILED IMAGE is negative. If the processor15

has the ability to detect that an image involved in execution of an image control statement or a collective or16

atomic subroutine has failed and does so, the value of STAT FAILED IMAGE is assigned to the variable specified17

in a STAT=specifier in an execution of an image control statement, or the STAT argument in an invocation of18

a collective or atomic procedure. If the STAT= specifier of an execution of a CHANGE TEAM, END TEAM,19

FORM TEAM, SYNC ALL, SYNC IMAGES, or SYNC TEAM statement is assigned the value STAT FAILED -20

IMAGE, the intended action shall have taken place for all the nonfailed images involved. A failed image is one21

for which references or definitions of a variable on the image fail when that variable should be accessible, or that22

has not initiated normal termination and fails to respond during the execution of an image control statement or23

a reference to a collective subroutine. A failed image remains failed for the remainder of the program execution24

unless the failure occurs as described in the next paragraph. If more than one nonzero status value is valid25

for the execution of a statement, the status variable is defined with a value other than STAT FAILED IMAGE.26

13

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

The conditions that cause an image to fail are processor dependent. STAT FAILED IMAGE is defined in the in-1

trinsic module ISO FORTRAN ENV. The values of the named constants IOSTAT INQUIRE INTERNAL UNIT,2

STAT FAILED IMAGE, STAT LOCKED, STAT LOCKED OTHER IMAGE, STAT STOPPED IMAGE, and3

STAT UNLOCKED are distinct.4

If an image-selector identifies an image that has failed and a team other than the initial team, the executing5

image is treated as a failed image for the rest of the execution of the corresponding CHANGE TEAM block. The6

executing image shall transfer control to the END TEAM statement of the construct.7

NOTE 5.8

A failed image is usually associated with a hardware failure of a cpu, memory system, or interconnection
network. A failure that occurs while a coindexed reference or definition, or collective action, is in progress
may leave variables on other images that would be defined by that action in an undefined state. Similarly,
failure while using a file may leave that file in an undefined state. An image that references data on an
image that has failed might be unable to make progress and fail for that reason.

NOTE 5.9

Continued execution after the failure of image 1 in the initial team might be difficult because of the lost
connection to standard input. However, the likelihood of a given image failing is small. With a large number
of images, the likelihood of some image other than image 1 in the initial team failing is significant and it is
for this circumstance that STAT FAILED IMAGE is designed.

14

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

6 Events1

6.1 Introduction2

An image can post an event to notify another image that it can proceed to work on tasks that use common3

resources. An image can wait on events posted by other images and can query if images have posted events.4

6.2 EVENT TYPE5

EVENT TYPE is a derived type with private components. It is an extensible type with no type parameters. Each6

component is fully default initialized. EVENT TYPE is defined in the intrinsic module ISO FORTRAN ENV .7

A scalar variable of type EVENT TYPE is an event variable. An event variable has a count that is updated8

by execution of a sequence of EVENT POST or EVENT WAIT statements. The effect of each change is as if9

the atomic subroutine ATOMIC ADD were executed with a variable that stores the event count as its ATOM10

argument. A coarray that is of type EVENT TYPE may be referenced or defined during the execution of a11

segment that is unordered relative to the execution of another segment in which that coarray of type EVENT -12

TYPE is defined. The event count is type INTEGER with KIND of ATOMIC INT KIND defined in the intrinsic13

module ISO FORTRAN ENV. The initial value of the event count of an event variable is zero.14

C601 A named variable of type EVENT TYPE shall be a coarray. A named variable with a noncoarray15

subcomponent of type EVENT TYPE shall be a coarray.16

C602 An event variable shall not appear in a variable definition context except as the event-variable in an17

EVENT POST or EVENT WAIT statement, as an allocate-object in an ALLOCATE statement without18

a SOURCE= alloc-opt , as an allocate-object in a DEALLOCATE statement, or as an actual argument in19

a reference to a procedure with an explicit interface if the corresponding dummy argument has INTENT20

(INOUT).21

C603 A variable with a nonpointer subobject of type EVENT TYPE shall not appear in a variable definition22

context except as an allocate-object in an ALLOCATE statement without a SOURCE= alloc-opt , as an23

allocate-object in a DEALLOCATE statement, or as an actual argument in a reference to a procedure24

with an explicit interface if the corresponding dummy argument has INTENT (INOUT).25

NOTE 6.1

The restrictions against changing an event variable except via EVENT POST and EVENT WAIT state-
ments ensure the integrity of its value and facilitate efficient implementation, particularly when special
synchronization is needed for correct event handling.

6.3 EVENT POST statement26

The EVENT POST statement provides a way to post an event. It is an image control statement.27

R601 event-post-stmt is EVENT POST(event-variable [, sync-stat-list])28

R602 event-variable is scalar-variable29

C604 (R602) An event-variable shall be of type EVENT TYPE (6.2).30

Successful execution of an EVENT POST statement atomically increments the count of the event variable by 1.31

If an error condition occurs during the execution of an EVENT POST statement, the count does not change.32

15

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

If the segment that precedes an EVENT POST statement is unordered with respect to the segment that precedes1

another EVENT POST statement for the same event variable, the order of execution of the EVENT POST2

statements is processor dependent.3

NOTE 6.2

It is expected that an image will continue executing after posting an event without waiting for an EVENT
WAIT statement to execute on the image of the event variable.

6.4 EVENT WAIT statement4

The EVENT WAIT statement provides a way to wait until events are posted. It is an image control statement.5

R603 event-wait-stmt is EVENT WAIT(event-variable [, wait-spec-list])6

R604 wait-spec is UNTIL COUNT = scalar-int-expr7

or sync-stat8

C605 (R603) An event-variable in an event-wait-stmt shall not be coindexed.9

Execution of an EVENT WAIT statement causes the following sequence of actions:10

(1) the threshold value is set to UNTIL COUNT if this specifier is provided with a positive value, and11

to 1 otherwise,12

(2) the executing image waits until the count of the event variable is greater than or equal to its threshold13

value or an error condition occurs, and14

(3) if no error condition occurs, the count of the event variable is atomically decremented by its threshold15

value.16

If an EVENT WAIT statement using an event variable is executed with a threshold of k, the segments preceding17

at least k EVENT POST statements using that event variable will precede the segment following the EVENT18

WAIT statement. The segment following a different EVENT WAIT statement using the same event variable can19

be ordered to succeed segments preceding other EVENT POST statements using that event variable.20

NOTE 6.3

The segment that follows the execution of an EVENT WAIT statement is ordered with respect to all the
segments that precede EVENT POST statements that caused prior changes in the sequence of values of
the event variable.

NOTE 6.4

Event variables of type EVENT TYPE are restricted so that EVENT WAIT statements can only wait on
an event variable on the executing image. This enables more efficient implementation of this concept.

16

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

7 Intrinsic procedures1

7.1 General2

Detailed specifications of the generic intrinsic procedures ATOMIC ADD, ATOMIC AND, ATOMIC CAS,3

ATOMIC FETCH ADD, ATOMIC FETCH AND, ATOMIC FETCH OR, ATOMIC FETCH XOR,4

ATOMIC OR, ATOMIC XOR, CO BROADCAST, CO MAX, CO MIN, CO REDUCE, CO SUM,5

EVENT QUERY, FAILED IMAGES, GET TEAM, IMAGE STATUS, STOPPED IMAGES, and TEAM ID are6

provided in 7.4. The types and type parameters of the arguments to these intrinsic procedures are determined by7

these specifications. The “Argument” paragraphs specify requirements on the actual arguments of the procedures.8

All of these intrinsic procedures are pure.9

The intrinsic procedures ATOMIC DEFINE, ATOMIC REF, IMAGE INDEX, MOVE ALLOC, NUM IMAGES,10

and THIS IMAGE described in clause 13 of ISO/IEC 1539-1:2010, as modified by ISO/IEC 1539-1:2010/Cor11

1:2012, are extended as described in 7.5.12

7.2 Atomic subroutines13

An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument or the count of its14

EVENT argument atomically. For any two executions of atomic subroutines in unordered segments by different15

images on the same atomic object, the effect is as if one of the executions is performed before the other in a16

single segment on a separate image, without access to the object in either execution interleaving with access to17

the object in the other. Which is executed first is indeterminate. The sequence of atomic actions within ordered18

segments is specified in 2.3.5 of ISO/IEC 1539-1:2010. If two variables are updated by atomic memory operations19

in segments P1 and P2, and the changes to them are observed by atomic accesses from a segment Q which is20

unordered relative to either P1 or P2, the changes need not be observed in segment Q in the same order as they21

are made in segments P1 and P2, even if segments P1 and P2 are ordered.22

For invocation of an atomic subroutine with an argument OLD, the determination of the value to be assigned to23

OLD is part of the atomic operation even though the assignment of that value to OLD is not. For invocation of24

an atomic subroutine, evaluation of an INTENT(IN) argument is not part of the atomic action.25

If the STAT argument is present in an invocation of an atomic subroutine and no error condition occurs, the26

argument is assigned the value zero.27

If the STAT argument is present in an invocation of an atomic subroutine and an error condition occurs, any28

ATOM, EVENT, or OLD argument becomes undefined. The STAT argument is assigned the value STAT -29

FAILED IMAGE if a coindexed ATOM or EVENT argument is determined to be located on a failed image;30

otherwise, the argument is assigned a processor-dependent positive value that is different from STAT FAILED -31

IMAGE.32

NOTE 7.1

If an atomic subroutine is executed for an object on a failed image, it is indeterminate whether the call will
fail. This is because an image might fail, but the memory location used for the atomic variable on that
image might remain available.

NOTE 7.2

These properties support the use of atomic subroutines for designing customized synchronization mech-
anisms. The programmer needs to account for all possible orderings of sequences of atomic subroutine
executions that can arise as a consequence of the above rules; the orderings can turn out to be different on
different images even in the same program run.

17

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

7.3 Collective subroutines1

A collective subroutine is one that is invoked on each nonfailed image of the current team to perform a calculation2

on those images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall3

be invoked by the same statement on all nonfailed images of the current team in execution segments that are not4

ordered with respect to each other. From the beginning to the end of execution as the current team, the sequence5

of invocations of collective subroutines shall be the same on all nonfailed images of the current team. A call to a6

collective subroutine shall appear only in a context that allows an image control statement.7

If the A argument to a collective subroutine is a whole coarray the corresponding ultimate arguments on all8

images of the current team shall be corresponding coarrays as described in 2.4.7 of ISO/IEC 1539-1:2010.9

Collective subroutines have the optional arguments STAT and ERRMSG. If the STAT argument is present in the10

invocation on one image it shall be present on the corresponding invocations on all of the images of the current11

team.12

If the STAT argument is present in an invocation of a collective subroutine and its execution is successful, the13

argument is assigned the value zero.14

If the STAT argument is present in an invocation of a collective subroutine and an error condition occurs, the ar-15

gument is assigned a nonzero value and the A argument becomes undefined. If execution involves synchronization16

with an image that has initiated normal termination, the argument is assigned the value of STAT STOPPED -17

IMAGE in the intrinsic module ISO FORTRAN ENV; otherwise, if no image of the current team has initiated18

normal termination or failed, the argument is assigned a processor-dependent positive value that is different from19

the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV.20

If an image of the current team has been detected as failed, but no other error condition occurred, the argument21

is assigned the value of the constant STAT FAILED IMAGE.22

If a condition occurs that would assign a nonzero value to a STAT argument but the STAT argument is not23

present, error termination is initiated.24

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs25

during its execution, the processor shall assign an explanatory message to the argument. If no such condition26

occurs, the processor shall not change the value of the argument.27

NOTE 7.3

The argument A becomes undefined in the event of an error condition for a collective because it is intended
that implementations be able to use A as scratch space.

NOTE 7.4

All the collectives have an argument A with INTENT(INOUT) that holds the original data on entry and
the result on return. If it is desired to retain the original data, this is readily obtained by making a copy
before entry. Here is an example:

REDUCTION = ORIGINAL

CALL CO_MIN(REDUCTION)

NOTE 7.5

There is no separate synchronization at the beginning and end of an invocation of a collective procedure,
which allows overlap with other actions. However, each collective involves transfer of data between images.
The rules of Fortran do not allow the value of an associated argument such as A to be changed except
via the argument. This includes action taken by another image that has not started its execution of the
collective or has finished it. This restriction has the effect of a partial synchronization of invocations of a
collective.

18

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

7.4 New intrinsic procedures1

7.4.1 ATOMIC ADD (ATOM, VALUE [, STAT])2

Description. Atomic add operation.3

Class. Atomic subroutine.4

Arguments.5

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,6

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It is7

an INTENT (INOUT) argument. ATOM becomes defined with the value of ATOM + INT(VALUE,8

ATOMIC INT KIND).9

VALUE shall be scalar and of type integer. It is an INTENT (IN) argument.10

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.11

Example.12

CALL ATOMIC ADD(I[3], 42) causes the value of I on image 3 to become its previous value plus 42.13

7.4.2 ATOMIC AND (ATOM, VALUE [, STAT])14

Description. Atomic bitwise AND operation.15

Class. Atomic subroutine.16

Arguments.17

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,18

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV.19

It is an INTENT (INOUT) argument. ATOM becomes defined with the value IAND (ATOM,20

INT(VALUE, ATOMIC INT KIND)).21

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.22

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.23

Example. CALL ATOMIC AND (I[3], 6) causes I on image 3 to become defined with the value 4 if the value24

of I[3] was 5 when the bitwise AND operation executed.25

7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW [, STAT])26

Description. Atomic compare and swap.27

Class. Atomic subroutine.28

Arguments.29

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND or of30

type logical with kind ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATOMIC LO-31

GICAL KIND are named constants in the intrinsic module ISO FORTRAN ENV. It is an INTENT32

(INOUT) argument. If the value of ATOM is equal to the value of COMPARE, ATOM becomes33

defined with the value of INT (NEW, ATOMIC INT KIND) if it is of type integer, and with the34

value of NEW if it is of type logical. If the value of ATOM is not equal to the value of COMPARE,35

the value of ATOM is not changed.36

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is37

defined with the value of ATOM that was used for performing the compare operation.38

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT(IN) argument.39

NEW shall be scalar and of the same type as ATOM. It is an INTENT(IN) argument.40

19

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.1

Example. CALL ATOMIC CAS(I[3], OLD, Z, 1) causes I on image 3 to become defined with the value 1 if2

its value is that of Z, and OLD to be defined with the value of I on image 3 that was used for performing the3

compare and swap operation.4

7.4.4 ATOMIC FETCH ADD (ATOM, VALUE, OLD [, STAT])5

Description. Atomic fetch and add operation.6

Class. Atomic subroutine.7

Arguments.8

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,9

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It is10

an INTENT (INOUT) argument. ATOM becomes defined with the value of ATOM + INT(VALUE,11

ATOMIC INT KIND).12

VALUE shall be a scalar of type integer. It is an INTENT (IN) argument.13

OLD shall be a scalar of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is14

defined with the value of ATOM that was used for performing the add operation.15

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.16

Example. CALL ATOMIC FETCH ADD(I[3], 7, OLD) causes I on image 3 to become defined with the value17

12 and the value of OLD on the image executing the statement to be defined with the value 5 if the value of I[3]18

was 5 when the add operation executed.19

7.4.5 ATOMIC FETCH AND (ATOM, VALUE, OLD [, STAT])20

Description. Atomic fetch and bitwise AND operation.21

Class. Atomic subroutine.22

Arguments.23

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,24

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It25

is an INTENT (INOUT) argument. ATOM becomes defined with the value of IAND(ATOM,26

INT(VALUE, ATOMIC INT KIND)).27

VALUE shall be a scalar of type integer. It is an INTENT (IN) argument.28

OLD shall be a scalar of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is29

defined with the value of ATOM that was used for performing the bitwise AND operation.30

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.31

Example. CALL ATOMIC FETCH AND (I[3], 6, IOLD) causes I on image 3 to become defined with the value32

4 and the value of IOLD on the image executing the statement to be defined with the value 5 if the value of I[3]33

was 5 when the bitwise AND operation executed.34

7.4.6 ATOMIC FETCH OR (ATOM, VALUE, OLD [, STAT])35

Description. Atomic fetch and bitwise OR operation.36

Class. Atomic subroutine.37

Arguments.38

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,39

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV.40

20

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

It is an INTENT (INOUT) argument. ATOM becomes defined with the value of IOR(ATOM,1

INT(VALUE, ATOMIC INT KIND)).2

VALUE shall be a scalar of type integer. It is an INTENT (IN) argument.3

OLD shall be a scalar of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is4

defined with the value of ATOM that was used for performing the bitwise OR operation.5

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.6

Example. CALL ATOMIC FETCH OR (I[3], 1, IOLD) causes I on image 3 to become defined with the value7

3 and the value of IOLD on the image executing the statement to be defined with the value 2 if the value of I[3]8

was 2 when the bitwise OR operation executed.9

7.4.7 ATOMIC FETCH XOR (ATOM, VALUE, OLD [, STAT])10

Description. Atomic fetch and bitwise exclusive OR operation.11

Class. Atomic subroutine.12

Arguments.13

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,14

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV. It15

is an INTENT (INOUT) argument. ATOM becomes defined with the value of IEOR(ATOM,16

INT(VALUE, ATOMIC INT KIND)).17

VALUE shall be a scalar of type integer. It is an INTENT (IN) argument.18

OLD shall be a scalar of the same type and kind as ATOM. It is an INTENT (OUT) argument. It is19

defined with the value of ATOM that was used for performing the bitwise exclusive OR operation.20

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.21

Example. CALL ATOMIC FETCH XOR (I[3], 1, IOLD) causes I on image 3 to become defined with the value22

2 and the value of IOLD on the image executing the statement to be defined with the value 3 if the value of I[3]23

was 3 when the bitwise exclusive OR operation executed.24

7.4.8 ATOMIC OR (ATOM, VALUE [, STAT])25

Description. Atomic bitwise OR operation.26

Class. Atomic subroutine.27

Arguments.28

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,29

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV.30

It is an INTENT (INOUT) argument. ATOM becomes defined with the value IOR (ATOM,31

INT(VALUE, ATOMIC INT KIND)).32

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.33

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.34

Example. CALL ATOMIC OR (I[3], 1) causes I on image 3 to become defined with the value 3 if the value of35

I[3] was 2 when the bitwise OR operation executed.36

7.4.9 ATOMIC XOR (ATOM, VALUE [, STAT])37

Description. Atomic bitwise exclusive OR operation.38

Class. Atomic subroutine.39

21

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

Arguments.1

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND,2

where ATOMIC INT KIND is a named constant in the intrinsic module ISO FORTRAN ENV.3

It is an INTENT (INOUT) argument. ATOM becomes defined with the value IEOR (ATOM,4

INT(VALUE, ATOMIC INT KIND)).5

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.6

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.7

Example. CALL ATOMIC XOR (I[3], 1) causes I on image 3 to become defined with the value 2 if the value of8

I[3] was 3 when the bitwise exclusive OR operation executed.9

7.4.10 CO BROADCAST (A, SOURCE IMAGE [, STAT, ERRMSG])10

Description. Copy a value to all images of the current team.11

Class. Collective subroutine.12

Arguments.13

A shall have the same dynamic type and type parameter values on all images of the current team. It14

is an INTENT(INOUT) argument. If it is an array, it shall have the same shape on all images of15

the current team. A becomes defined, as if by intrinsic assignment, on all images of the current16

team with the value of A on image SOURCE IMAGE.17

SOURCE IMAGE shall be a scalar of type integer. It is an INTENT(IN) argument. It shall be the image index18

of an image of the current team and have the same value on all images of the current team.19

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.20

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.21

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.22

Example. If A is the array [1, 5, 3] on image one, after execution of CALL CO BROADCAST(A,1) the value23

of A on all images of the current team is [1, 5, 3].24

7.4.11 CO MAX (A [, RESULT IMAGE, STAT, ERRMSG])25

Description. Compute elemental maximum value on the current team of images.26

Class. Collective subroutine.27

Arguments.28

A shall be of type integer, real, or character. It shall have the same type and type parameters on all29

images of the current team. It is an INTENT(INOUT) argument. If it is a scalar, the computed30

value is equal to the maximum value of A on all images of the current team. If it is an array it shall31

have the same shape on all images of the current team and each element of the computed value is32

equal to the maximum value of all the corresponding elements of A on the images of the current33

team.34

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it35

shall be present on all images of the current team, have the same value on all images of the current36

team, and that value shall be the image index of an image of the current team.37

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.38

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.39

If RESULT IMAGE is not present, the computed value is assigned to A on all the images of the current team. If40

RESULT IMAGE is present, the computed value is assigned to A on image RESULT IMAGE and A on all other41

images of the current team becomes undefined.42

22

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.1

Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,2

1, 6] on the other image, the value of A after executing the statement CALL CO MAX(A) is [4, 5, 6] on both3

images.4

7.4.12 CO MIN (A [, RESULT IMAGE, STAT, ERRMSG])5

Description. Compute elemental minimum value on the current team of images.6

Class. Collective subroutine.7

Arguments.8

A shall be of type integer, real, or character. It shall have the same type and type parameters on all9

images of the current team. It is an INTENT(INOUT) argument. If it is a scalar, the computed10

value is equal to the minimum value of A on all images of the current team. If it is an array it shall11

have the same shape on all images of the current team and each element of the computed value is12

equal to the minimum value of all the corresponding elements of A on the images of the current13

team.14

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it15

shall be present on all images of the current team, have the same value on all images of the current16

team, and that value shall be the image index of an image of the current team.17

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.18

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.19

If RESULT IMAGE is not present, the computed value is assigned to A on all the images of the current team. If20

RESULT IMAGE is present, the computed value is assigned to A on image RESULT IMAGE and A on all other21

images of the current team becomes undefined.22

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.23

Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,24

1, 6] on the other image, the value of A after executing the statement CALL CO MIN(A) is [1, 1, 3] on both25

images.26

7.4.13 CO REDUCE (A, OPERATOR [, RESULT IMAGE, STAT, ERRMSG])27

Description. General reduction of elements on the current team of images.28

Class. Collective subroutine.29

Arguments.30

A shall not be polymorphic. It shall have the same type and type parameters on all images of the31

current team. It is an INTENT(INOUT) argument. If A is a scalar, the computed value is the32

result of the reduction operation of applying OPERATOR to the values of A on all images of the33

current team. If A is an array it shall have the same shape on all images of the current team and34

each element of the computed value is equal to the result of the reduction operation of applying35

OPERATOR to all the corresponding elements of A on all the images of the current team.36

OPERATOR shall be a pure function with two arguments of the same type and type parameters as A. Its37

result shall have the same type and type parameters as A. The arguments and result shall not38

be polymorphic. OPERATOR shall implement a mathematically commutative and associative39

operation. OPERATOR shall implement the same function on all images of the current team.40

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it41

shall be present on all images of the current team, have the same value on all images of the current42

team, and that value shall be the image index of an image of the current team.43

23

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.1

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.2

If RESULT IMAGE is not present, the computed value is assigned to A on all images of the current team. If3

RESULT IMAGE is present, the computed value is assigned to A on image RESULT IMAGE and A on all other4

images of the current team becomes undefined.5

The computed value of a reduction operation over a set of values is the result of an iterative process. Each6

iteration involves the execution of r = OPERATOR(x,y) for x and y in the set, the removal of x and y from the7

set, and the addition of r to the set. The process terminates when the set has only one element which is the value8

of the reduction.9

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.10

Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,11

1, 6] on the other image, and MyADD is a function that returns the sum of its two integer arguments, the value12

of A after executing the statement CALL CO REDUCE(A, MyADD) is [5, 6, 9] on both images.13

7.4.14 CO SUM (A [, RESULT IMAGE, STAT, ERRMSG])14

Description. Sum elements on the current team of images.15

Class. Collective subroutine.16

Arguments.17

A shall be of numeric type. It shall have the same type and type parameters on all images of the18

current team. It is an INTENT(INOUT) argument. If it is a scalar, the computed value is equal19

to a processor-dependent and image-dependent approximation to the sum of the values of A on20

all images of the current team. If it is an array it shall have the same shape on all images of21

the current team and each element of the computed value is equal to a processor-dependent and22

image-dependent approximation to the sum of all the corresponding elements of A on the images of23

the current team.24

RESULT IMAGE (optional) shall be a scalar of type integer. It is an INTENT(IN) argument. If it is present, it25

shall be present on all images of the current team, have the same value on all images of the current26

team, and that value shall be the image index of an image of the current team.27

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.28

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.29

If RESULT IMAGE is not present, the computed value is assigned to A on all the images of the current team. If30

RESULT IMAGE is present, the computed value is assigned to A on image RESULT IMAGE and A on all other31

images of the current team becomes undefined.32

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.33

Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,34

1, 6] on the other image, the value of A after executing the statement CALL CO SUM(A) is [5, 6, 9] on both35

images.36

7.4.15 EVENT QUERY (EVENT, COUNT [, STAT, ERRMSG])37

Description. Query the count of an event variable.38

Class. Atomic subroutine.39

Arguments.40

EVENT shall be scalar and of type EVENT TYPE defined in the ISO FORTRAN ENV intrinsic module.41

24

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

It is an INTENT(IN) argument.1

COUNT shall be scalar and of type integer with a decimal range no smaller that that of default integer. It2

is an INTENT(OUT) argument. If no error conditions occurs, COUNT is assigned the value of the3

count of EVENT. Otherwise, it is assigned the value 0.4

STAT (optional) shall be scalar and of type default integer. It is an INTENT(OUT) argument.5

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.6

If the ERRMSG argument is present and an error condition occurs, the processor shall assign an explanatory7

message to the argument. If no such condition occurs, the processor shall not change the value of the argument.8

Example. If EVENT is an event variable for which there have been no successful posts or waits, after the9

invocation10

CALL EVENT_QUERY (EVENT, COUNT)11

the integer variable COUNT has the value 0. If there have been 10 successful posts to EVENT[2] and 2 successful12

waits without an UNTIL COUNT specification, after the invocation13

CALL EVENT_QUERY (EVENT[2], COUNT)14

COUNT has the value 8.15

NOTE 7.6

Execution of EVENT QUERY does not imply any synchronization.

7.4.16 FAILED IMAGES ([TEAM, KIND])16

Description. Indices of failed images.17

Class. Transformational function.18

Arguments.19

TEAM (optional) shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic20

module. Its value shall represent an ancestor team.21

KIND (optional) shall be a scalar integer constant expression. Its value shall be the value of a kind type parameter22

for the type INTEGER. The range for integers of this kind shall be at least as large as for default23

integer.24

Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value25

of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one26

whose size is equal to the number of images in the specified team that are known by the invoking image to have27

failed.28

Result Value. If TEAM is present, its value specifies the team; otherwise, the team specified is the current29

team. The elements of the result are the values of the image indices of the known failed images in the specified30

team, in numerically increasing order. If the executing image has previously executed an image control statement31

whose STAT= specifier assigned the value STAT FAILED IMAGE or invoked a collective subroutine whose STAT32

argument was set to STAT FAILED IMAGE and has not meanwhile entered or left a CHANGE TEAM construct,33

at least one image in the set of images participating in that image control statement or collective invocation shall34

be known to have failed.35

Examples. If image 3 is the only failed image in the current team, FAILED IMAGES() has the value [3]. If36

there are no images in the current team that are known by the invoking image to have failed, FAILED IMAGES()37

is a zero-sized array.38

25

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

7.4.17 GET TEAM ([LEVEL])1

Description. Team value.2

Class. Transformational function.3

Argument. LEVEL (optional) shall be a scalar integer whose value shall be equal to one of the named con-4

stants INITIAL TEAM, PARENT TEAM, and CURRENT TEAM defined in the ISO FORTRAN ENV intrinsic5

module.6

Result Characteristics. Scalar and of type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic7

module.8

Result Value. The result is the value of a team variable for the current team if LEVEL is not present, LEVEL9

is present with the value CURRENT TEAM, or the current team is the initial team. Otherwise, the result is the10

value of a team variable for the parent team if LEVEL is present with the value PARENT TEAM, and for the11

initial team if LEVEL is present with the value INITIAL TEAM.12

Examples.13

USE,INTRINSIC :: ISO_FORTRAN_ENV14

TYPE(TEAM_TYPE) :: WORLD_TEAM, TEAM215

16

! Define a team variable representing the initial team17

WORLD_TEAM = GET_TEAM()18

END19

20

SUBROUTINE TT (A)21

USE,INTRINSIC :: ISO_FORTRAN_ENV22

REAL A[*]23

TYPE(TEAM_TYPE) :: NEW_TEAM, PARENT_TEAM24

25

... ! Form NEW_TEAM26

27

PARENT_TEAM = GET_TEAM()28

29

CHANGE TEAM(NEW_TEAM)30

31

! Reference image 1 in parent’s team32

A [PARENT_TEAM :: 1] = 4.233

34

! Reference image 1 in current team35

A [1] = 9.036

END TEAM37

END SUBROUTINE TT38

39

7.4.18 IMAGE STATUS (IMAGE, [TEAM])40

Description. Status of images.41

Class. Elemental function.42

Arguments.43

IMAGE shall be of type integer.44

TEAM (optional) shall be a scalar of type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic module.45

Its value shall represent an ancestor team.46

26

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

Result Characteristics. Default integer.1

Result Value. If TEAM is present, its value specifies the team; otherwise, the team specified is the current2

team. The result value is STAT FAILED IMAGE if the specified image has failed, STAT STOPPED IMAGE if3

that image has initiated normal termination, a nonzero processor-dependent value different from STAT FAILED -4

IMAGE or STAT STOPPED IMAGE if some other error has occurred for that image, and zero otherwise.5

Example. If image 3 of the current team has failed, IMAGE STATUS (3) has the value STAT FAILED IMAGE.6

7.4.19 STOPPED IMAGES ([TEAM, KIND])7

Description. Indices of stopped images.8

Class. Transformational function.9

Arguments.10

TEAM (optional) shall be a scalar of type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic module.11

Its value shall represent an ancestor team.12

KIND (optional) shall be a scalar integer constant expression. Its value shall be the value of a kind type parameter13

for the type INTEGER. The range for integers of this kind shall be at least as large as for default14

integer.15

Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value16

of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one17

whose size is equal to the number of images in the specified team that have initiated normal termination.18

Result Value. If TEAM is present, its value specifies the team; otherwise, the team specified is the current19

team. The elements of the result are the values of the indices of the images that have initiated normal termination20

in the specified team, in numerically increasing order. If the executing image has previously executed an image21

control statement whose STAT= specifier assigned the value STAT STOPPED IMAGE or invoked a collective22

subroutine whose STAT argument was set to STAT STOPPED IMAGE, and has not meanwhile entered or left a23

CHANGE TEAM construct, at least one image in the set of images participating in that image control statement24

or collective invocation shall have initiated normal termination.25

Examples. If image 3 is the only image in the current team that has initiated normal termination, STOPPED -26

IMAGES() has the value [3]. If there are no images in the current team that have initiated normal termination,27

STOPPED IMAGES() is a zero-sized array.28

7.4.20 TEAM ID ([TEAM])29

Description. Team identifier.30

Class. Transformational function.31

Argument. TEAM (optional) shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV32

intrinsic module. Its value shall represent an ancestor team.33

Result Characteristics. Default integer scalar.34

Result Value. If TEAM is present, the result has the value of the team identifier of the invoking image in the35

team specified by the value of TEAM; otherwise, the result value is the team identifier of the invoking image in36

the current team.37

Example. The following code illustrates the use of TEAM ID to control which code is executed.38

TYPE(TEAM_TYPE) :: ODD_EVEN39

:40

ME = THIS_IMAGE()41

27

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

FORM TEAM (2-MOD(ME,2), ODD_EVEN)1

CHANGE TEAM (ODD_EVEN)2

SELECT CASE (TEAM_ID())3

CASE (1)4

: ! Code for images with odd image indices in parent team5

CASE (2)6

: ! Code for images with even image indices in parent team7

END SELECT8

END TEAM9

7.5 Modified intrinsic procedures10

7.5.1 ATOMIC DEFINE and ATOMIC REF11

The descriptions of the intrinsic functions ATOMIC DEFINE and ATOMIC REF in ISO/IEC 1539-1:2010 are12

changed to take account of the possibility that an ATOM argument is located on a failed image and to add the13

optional argument STAT.14

The STAT argument shall be a scalar of type integer. It is an INTENT(OUT) argument.15

7.5.2 IMAGE INDEX16

The description of the intrinsic function IMAGE INDEX in ISO/IEC 1539-1:2010 is changed by adding two17

additional versions that specify the team with the argument TEAM or the argument TEAM ID, and a modified18

result if either of these versions is invoked.19

The TEAM argument shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic20

module. Its value shall represent an ancestor team.21

The TEAM ID argument shall be a positive scalar integer. Its value shall be that of a team identifier for a team22

that was formed by execution of a FORM TEAM statement for the current team.23

7.5.3 MOVE ALLOC24

The description of the intrinsic function MOVE ALLOC in ISO/IEC 1539-1:2010, as modified by ISO/IEC25

1539-1:2010/Cor 2:2013, is changed to take account of the possibility of failed images and to add two optional26

arguments, STAT and ERRMSG, and a modified result if either is present.27

The STAT argument shall be a scalar of type default integer. It is an INTENT(OUT) argument.28

The ERRMSG argument shall be a scalar of type default character. It is an INTENT(INOUT) argument.29

If the execution is successful30

(1) The allocation status of TO becomes unallocated if FROM is unallocated on entry to MOVE -31

ALLOC. Otherwise, TO becomes allocated with dynamic type, type parameters, array bounds,32

array cobounds, and value identical to those that FROM had on entry to MOVE ALLOC.33

(2) If TO has the TARGET attribute, any pointer associated with FROM on entry to MOVE ALLOC34

becomes correspondingly associated with TO. If TO does not have the TARGET attribute, the35

pointer association status of any pointer associated with FROM on entry becomes undefined.36

(3) The allocation status of FROM becomes unallocated.37

When a reference to MOVE ALLOC is executed for which the FROM argument is a coarray, there is an implicit38

synchronization of all nonfailed images of the current team. On each nonfailed image, execution of the segment39

(8.5.2 of ISO/IEC 1539-1:2010) following the CALL statement is delayed until all other nonfailed images of the40

current team have executed the same statement the same number of times.41

28

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

If the STAT argument appears and execution is successful on all images, the argument is assigned the value1

zero; if a failed image is detected and execution is otherwise successful, the STAT= specifier is assigned the value2

STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV.3

If the STAT argument appears and an error condition occurs, the argument is assigned the value STAT -4

STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV if the reason is that a successful execution would5

have involved an interaction with an image that has initiated termination; otherwise, the value is a processor-6

dependent positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE.7

If the STAT argument does not appear and an error condition occurs or an image involved in execution of the8

statement has failed, error termination is initiated.9

If the ERRMSG argument is present and an error condition occurs, the processor shall assign an explanatory10

message to the argument. If no such condition occurs, the processor shall not change the value of the argument.11

7.5.4 NUM IMAGES12

The description of the intrinsic function NUM IMAGES in ISO/IEC 1539-1:2010 is changed by adding the optional13

argument FAILED and two additional versions that specify the team with the argument TEAM or the argument14

TEAM ID, and a modified result if any of these versions is invoked.15

The TEAM argument shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic16

module. Its value shall represent an ancestor team.17

The TEAM ID argument shall be a positive scalar integer. Its value shall be that of a team identifier for a team18

that was formed by the execution of a FORM TEAM statement for the current team.19

The FAILED argument shall be a scalar of type LOGICAL. If FAILED is not present the result is the number of20

images in the team specified. If FAILED is present with the value true, the result is the number of failed images21

in the team specified, otherwise the result is the number of nonfailed images in the team specified.22

7.5.5 THIS IMAGE23

The description of the intrinsic function THIS IMAGE() in ISO/IEC 1539-1:2010, as modified by ISO/IEC24

1539-1:2010/Cor 1:2012, is changed by adding an optional argument TEAM and a modified result if TEAM is25

present.26

The TEAM argument shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic27

module. It shall not be a coarray. If TEAM is present, the result is the image index that the invoking image has28

in the team specified by the value of TEAM; otherwise, the result value is the image index of the invoking image29

in the current team.30

29

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1

(Blank page)2

3

30

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

8 Required editorial changes to ISO/IEC 1539-1:2010(E)1

8.1 General2

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of this3

Technical Specification. Descriptions of how and where to place the new material are enclosed in braces {}. Edits4

to different places within the same clause are separated by horizontal lines.5

In the edits, except as specified otherwise by the editorial instructions, underwave (
:::::::::
underwave) and strike-out6

(strike-out) are used to indicate insertion and deletion of text.7

8.2 Edits to Introduction8

{In paragraph 1 of the Introduction}9

After “informally known as Fortran 2008, plus the facilities defined in ISO/IEC TS 29113:2012” add “and ISO/IEC10

TS 18508:2015”.11

{After paragraph 3 of the Introduction and after the paragraph added by ISO/IEC TS 29113:2012, insert new12

paragraph}13

ISO/IEC TS 18508 provides additional facilities for parallel programming:14

• teams provide a capability for a subset of the images of the program to act as if it consists of all images for the15

purposes of image index values, coarray allocations, and synchronization.16

• collective subroutines perform computations based on values on all the images of the current team, offering the17

possibility of efficient execution of reduction operations;18

• atomic memory operations provide powerful low-level primitives for synchronization of activities among images19

and performing limited remote computation;20

• tagged events allow one-sided ordering of execution segments;21

• features for the support of continued execution after one or more images have failed; and22

• features to detect which images have failed and simulate failure of an image.23

8.3 Edits to clause 124

{In 1.3 Terms and definitions, insert new terms as follows}25

1.3.8a26

asynchronous progress27

ability of images to define or reference coarrays without requiring the images on which the data reside to execute28

any particular statements29

1.3.30a30

collective subroutine31

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and32

assign the computed value on one or all of them (13.1)33

31

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

1.3.85a1

failed image2

an image for which references or definitions of a variable on the image fail when that variable should be accessible,3

or that has not initiated normal termination and fails to respond during the execution of an image control4

statement or a reference to a collective subroutine (13.8.2.21b)5

1.3.145a6

team7

set of images that can readily execute independently of other images (2.3.4)8

1.3.145a.19

current team10

the team specified in the CHANGE TEAM statement of the innermost executing CHANGE TEAM construct,11

or the initial team if no CHANGE TEAM construct is active (2.3.4)12

1.3.145a.213

initial team14

the current team when the program began execution (2.3.4)15

1.3.145a.316

parent team17

team from which the current team was formed by executing a FORM TEAM statement (2.3.4)18

1.3.145a.419

team identifier20

integer value identifying a team (2.3.4)21

1.3.154.1-22

event variable23

scalar variable of type EVENT TYPE (13.8.2.8a) from the intrinsic module ISO FORTRAN ENV24

1.3.154.325

team variable26

scalar variable of type TEAM TYPE (13.8.2.26) from the intrinsic module ISO FORTRAN ENV27

8.4 Edits to clause 228

{In 2.1 High level syntax, Add new construct and statements into the syntax list as follows: In R213 executable-29

construct insert alphabetically “change-team-construct”; in R214 action-stmt insert alphabetically “event-post-30

stmt”, “event-wait-stmt”, “fail-image-stmt”, “form-team-stmt”, and “sync-team-stmt”.31

{In 2.3.4 Program execution, after the first paragraph, insert 5.1, paragraphs 1 and 2, of this Technical Spe-32

cification with the following changes: In the first paragraph delete “in ISO/IEC 1539-1:2010” following “R624”33

and insert “(8.5.2c)” following “FORM TEAM statement”. In the second paragraph insert “(8.1.4a)” following34

“CHANGE TEAM construct”. }35

{In 2.4.7 Coarray, after the first paragraph, insert 5.1 paragraph 3 of this Technical Specification.}36

{In 2.4.7 Coarray, edit the second paragraph as follows.}37

For each coarray on an image
:
of

::
a
:::::
team, there is a corresponding coarray with the same type, type parameters,38

and bounds on every other image
::
of

::::
that

:::::
team.39

{In 2.4.7 Coarray, edit the first sentence of the third paragraph as follows.}40

The set of corresponding coarrays on all images
::
of

::
a

:::::
team is arranged in a rectangular pattern.41

32

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

{In 2.4.7 Coarray, edit the first sentence of the fourth paragraph as follows.}1

A coarray on any image
:
of

::::
the

:::::::
current

:::::
team can be accessed directly by using cosubscripts.2

8.5 Edits to clause 43

{In 4.5.2.1 Syntax, edit constraint C433 as follows}4

C433 (R425) If EXTENDS appears and the type defined has an ultimate
:
a component of type

:::::::
EVENT

:::::::
TYPE

::
or5

LOCK TYPE from the intrinsic module ISO FORTRAN ENV,
:
at

::::
any

:::::
level

::
of

::::::::::
nonpointer

::::::::::
component

:::::::::
selection,6

its parent type shall have an ultimate
:
a component

:
at

::::::
some

::::
level

:::
of

::::::::::
nonpointer

:::::::::::
component

::::::::
selection of type7

:::::::
EVENT

:::::::
TYPE

::
or LOCK TYPE ,

:::::::::::
respectively.8

{In 4.5.6.2 The finalization process, add to the end of NOTE 4.48}9

in the current team10

8.6 Edits to clause 611

{In 6.6 Image selectors, replace R624 with}12

R624 image-selector is lbracket [team-variable ::] cosubscript-list13

[, TEAM ID = scalar-int-expr] rbracket14

C627a (R624) team-variable and TEAM ID = shall not both appear in the same image-selector .15

{In 6.6 Image selectors, edit the last sentence of the second paragraph as follows.}16

An image selector shall specify an image index value that is not greater than the number of images
::
in

:::
the

:::::
team17

:::::::
specified

:::
by

:::::::::::::
team-variable

::
or

::
a

:::::::
TEAM

:::
ID

:::::::
specifier

::
if
::::::
either

:::::::
appears

:::
or

::
in

:::
the

:::::::
current

:::::
team

:::::::::
otherwise.18

{In 6.6 Image selectors, after paragraph 2 insert the two paragraphs following C508 in 5.4 of this Technical19

Specification with the following change: following “FORM TEAM statement” insert “(8.5.2c)” }20

{In 6.7.1.2, Execution of an ALLOCATE statement, edit paragraphs 3 and 4 as follows}21

If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be the22

same on every image
:
in

::::
the

:::::::
current

::::
team. The values of corresponding bounds and corresponding cobounds shall23

be the same on every image
::::
these

:::::::
images. If the coarray is a dummy argument, its ultimate argument (12.5.2.3)24

shall be the same coarray on every image
::::
these

:::::::
images.25

When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-26

chronization of all
:::::::
nonfailed images

:
in

::::
the

:::::::
current

:::::
team. On each image

:::::
these

::::::
images, execution of the segment27

(8.5.2) following the statement is delayed until all other
:::::::
nonfailed images

:
in

::::
the

:::::::
current

:::::
team have executed the28

same statement the same number of times.29

{In 6.7.3.2, Deallocation of allocatable variables, edit paragraphs 11 and 12 as follows}30

When a DEALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit31

synchronization of all
::::::::
nonfailed images

::
in

:::
the

::::::::
current

:::::
team. On each image

::::
these

:::::::
images, execution of the32

segment (8.5.2) following the statement is delayed until all other
::::::::
nonfailed images

::
in

::::
the

:::::::
current

:::::
team have33

executed the same statement the same number of times. If the coarray is a dummy argument, its ultimate34

argument (12.5.2.3) shall be the same coarray on every image
::::
these

:::::::
images.35

There is also an implicit synchronization of all
::::::::
nonfailed images

::
in

:::
the

:::::::
current

::::::
team in association with the36

deallocation of a coarray or coarray subcomponent caused by the execution of a RETURN or END statement or37

33

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

the termination of a BLOCK construct.1

{In 6.7.4 STAT=specifier, edit paragraph 2 as follows}2

If the STAT= specifier appears, successful execution of the ALLOCATE or DEALLOCATE statement
::
on

:::
all3

::::::
images causes the stat-variable to become defined with the value zero

:
;
::
if

:
a
::::::
failed

:::::
image

::
is
::::::::
detected

::::
and

:::::::::
execution4

:
is
:::::::::
otherwise

::::::::::
successful,

:::
the

:::::::
STAT=

::::::::
specifier

::
is

::::::::
assigned

:::
the

:::::
value

::::::
STAT

::::::::
FAILED

::::::::
IMAGE

::
in

::::
the

:::::::
intrinsic

:::::::
module5

:::
ISO

:::::::::::
FORTRAN

:::::
ENV

::::::::
(13.8.2).6

{In 6.7.4 STAT= specifier, para 3, replace the text to the bullet list with}7

If the STAT= specifier appears in an ALLOCATE or DEALLOCATE statement with a coarray allocate-object8

and an error condition occurs, the specified variable is assigned a positive value. The value shall be that of9

the constant STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV if the reason is that a10

successful execution would have involved an interaction with an image that has initiated termination; otherwise,11

the value is a processor-dependent positive value that is different from the value of STAT STOPPED IMAGE or12

STAT FAILED IMAGE in the intrinsic module ISO FORTRAN ENV. In all of these cases, each allocate-object13

has a processor-dependent allocation status:14

{At the end of 6.7.4 STAT= specifier, append the following new paragraph}15

If the STAT argument does not appear and an error condition occurs or an image involved in execution of the16

statement has failed, error termination is initiated.17

8.7 Edits to clause 818

{In 8.1.1 General, paragraph 1, following the BLOCK construct entry in the list of constructs insert}19

• CHANGE TEAM construct;20

{Following 8.1.4 BLOCK construct insert 5.3 CHANGE TEAM construct from this Technical Specification as21

8.1.4a, with rule, constraint, and Note numbers modified, the reference “(5.2)” in C506 changed to “(13.8.2.26)”,22

and in the third paragraph following C507, delete “of ISO/IEC 1539-1:2010”. }23

{In 8.1.5 CRITICAL construct: In para 1, line 1, after “one image” add “of the current team”. In para 3, line 1,24

after “other image” add “of the current team”.}25

{Following 8.4 STOP and ERROR STOP statements, insert 5.7 FAIL IMAGE statement from this Technical26

Specification as 8.4a, with rule and Note numbers modified.}27

{In 8.5.1 Image control statements, paragraph 2, insert extra bullet points following the CRITICAL and END28

CRITICAL line}29

• CHANGE TEAM and END TEAM;30

• EVENT POST and EVENT WAIT;31

• FORM TEAM;32

• SYNC TEAM;33

{In 8.5.1 Image control statements, edit paragraph 3 as follows}34

All image control statements except CRITICAL, END CRITICAL,
::::::
FORM

::::::::
TEAM, LOCK, and UNLOCK include35

the effect of executing a SYNC MEMORY statement (8.5.5).36

{In 8.5.2 Segments, after the first sentence of paragraph 3, insert the following }37

34

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

A coarray that is of type EVENT TYPE may be referenced or defined during the execution of a segment that is1

unordered relative to the execution of another segment in which that coarray of type EVENT TYPE is defined.2

{Following 8.5.2 Segments insert 6.3 EVENT POST statement from this Technical Specification as 8.5.2a, with3

rule and constraint numbers modified, and change the “(6.2)” in C604 to “(13.8.2.8a)”, and change the “(6.5)”4

at the end of the paragraph of text to “(13.8.2.21a)” }5

{Following 8.5.2 Segments insert 6.4 EVENT WAIT statement from this Technical Specification as 8.5.2b, with6

rule and constraint numbers modified.}7

{Following 8.5.2 Segments insert 5.5 FORM TEAM statement from this Technical Specification as 8.5.2c, with8

rule and Note numbers modified.}9

{In 8.5.3 SYNC ALL statement, edit paragraph 2 as follows}10

Execution of a SYNC ALL statement performs a synchronization of all
::::::::
nonfailed images

::
in

:::
the

:::::::
current

::::::
team.11

Execution on an image, M, of the segment following the SYNC ALL statement is delayed until each other12

::::::::
nonfailed image

::
in

:::
the

:::::
team has executed a SYNC ALL statement as many times as has image M. The segments13

that executed before the SYNC ALL statement on an image precede the segments that execute after the SYNC14

ALL statement on another image.15

{In 8.5.4 SYNC IMAGES, edit paragraphs 1 through 3 as follows}16

If image-set is an array expression, the value of each element shall be positive and not greater than the number17

of images
::
in

:::
the

:::::::
current

:::::
team, and there shall be no repeated values.18

If image-set is a scalar expression, its value shall be positive and not greater than the number of images
::
in

:::
the19

::::::
current

:::::
team.20

An image-set that is an asterisk specifies all images
::
in

:::
the

:::::::
current

:::::
team.21

{Following 8.5.5 SYNC MEMORY statement, insert 5.6 SYNC TEAM statement from this Technical Specification22

as 8.5.5a, with the rule number modified.}23

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 1 and 2 by}24

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM25

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and its26

execution is successful on all images, the specified variable is assigned the value zero; if a failed image is detected27

and execution is otherwise successful, the STAT= specifier is assigned the value STAT FAILED IMAGE in the28

intrinsic module ISO FORTRAN ENV (13.8.2).29

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM30

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and an31

error condition occurs, the specified variable is assigned a positive value. The value shall be the constant STAT -32

STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV if the reason is that a successful execution would33

have involved an interaction with an image that has initiated termination; otherwise, the value is a processor-34

dependent positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE35

in the intrinsic module ISO FORTRAN ENV.36

The set of images involved in execution of a END TEAM, FORM TEAM, SYNC ALL or SYNC MEMORY37

statement is that of the current team. The set of images involved in execution of a CHANGE TEAM or SYNC38

TEAM statement is that of the team specified by the value of the specified team-variable argument. The set39

of images involved in execution of a SYNC IMAGES statement is that specified as its image-set . The image40

involved in execution of a LOCK or UNLOCK statement is that on which the referenced lock variable is located.41

The image involved in execution of an EVENT POST statement is that on which the referenced event variable42

is located.43

35

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

After execution of an image control statement with a STAT= specifier, all the failed images involved in the1

statement shall be known by the executing image to have failed.2

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, SYNC3

ALL, SYNC IMAGES, or SYNC TEAM statement and an error condition occurs, the effect is the same as that4

of executing the SYNC MEMORY statement, except for defining the STAT= variable.5

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 4 and 5 by}6

If the STAT= specifier does not appear in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT,7

FORM TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement8

and its execution is not successful or an image involved in execution of the statement has failed, error termination9

is initiated.10

If an ERRMSG= specifier appears in a CHANGE TEAM, END TEAM, EVENT POST, EVENT WAIT, FORM11

TEAM, LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, SYNC TEAM, or UNLOCK statement and12

its execution is not successful, the processor shall assign an explanatory message to the specified variable. If the13

execution is successful, the processor shall not change the value of the variable.14

8.8 Edits to clause 915

{In 9.5.1, Referring to a file, edit the first sentence of paragraph 4 as follows}16

In a READ statement, an io-unit that is an asterisk identifies an external unit that is preconnected for sequential17

formatted input on image 1
:
of
::::

the
::::::
initial

:::::
team only (9.6.4.3).18

8.9 Edits to clause 1319

{In 13.1 Classes of intrinsic procedures, edit paragraph 1 as follows}20

Intrinsic procedures are divided into seven
::::
eight classes: inquiry functions, elemental functions, transformational21

functions, elemental subroutines, pure subroutines, atomic subroutines,
::::::::
collective

:::::::::::
subroutines, and (impure)22

subroutines.23

{In 13.1 Classes of intrinsic procedures, replace paragraph 3 by paragraphs 1 through 4 and NOTES 7.1 and 7.224

of 7.2 Atomic subroutines of this Technical Specification, with these changes: Delete “of ISO/IEC 1539-1:2010’25

and renumber the NOTES.’}26

{In 13.1 Classes of intrinsic procedures, insert the contents of 7.3 Collective subroutines of this Technical Specific-27

ation after paragraph 3 and Note 13.1, with these changes: Paragraph 2 of 7.3. Delete “of ISO/IEC 1539-1:2010”28

Paragraph 5 of 7.3. Add “(13.8.2)” after the first “ISO FORTRAN ENV”.}29

{In 13.5 Standard generic intrinsic procedures, paragraph 2 after the line ”A indicates ... atomic subroutine”30

insert a new line}31

C indicates that the procedure is a collective subroutine32

{In 13.5 Standard generic intrinsic procedures, Table 13.1, insert new entries into the table, alphabetically}33

ATOMIC ADD (ATOM, VALUE [, STAT]) A Atomic add operation.
ATOMIC AND (ATOM, VALUE [, STAT]) A Atomic bitwise AND operation.
ATOMIC CAS (ATOM, OLD, COMPARE, A Atomic compare and swap.

NEW [, STAT])
ATOMIC FETCH ADD (ATOM, VALUE, OLD A Atomic fetch and add operation.

[,STAT])
ATOMIC FETCH AND (ATOM, VALUE, OLD A Atomic fetch and bitwise AND operation.

36

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

[,STAT])
ATOMIC FETCH OR (ATOM, VALUE, OLD A Atomic fetch and bitwise OR operation.

[,STAT])
ATOMIC FETCH XOR (ATOM, VALUE, OLD A Atomic fetch and bitwise exclusive OR

[,STAT]) operation.
ATOMIC OR (ATOM, VALUE [, STAT]) A Atomic bitwise OR operation.
ATOMIC XOR (ATOM, VALUE [, STAT]) A Atomic bitwise exclusive OR operation.
CO BROADCAST (A, SOURCE IMAGE C Copy a value to all images of the current team.

[, STAT, ERRMSG])
CO MAX (A [, RESULT IMAGE, C Compute maximum of elements across images.

STAT, ERRMSG])
CO MIN (A [, RESULT IMAGE, C Compute minimum of elements across images.

STAT, ERRMSG])
CO REDUCE (A, OPERATOR C General reduction of elements across images.

[, RESULT IMAGE
, STAT, ERRMSG])

CO SUM (A [, RESULT IMAGE, C Sum elements across images.
STAT, ERRMSG])

EVENT QUERY (EVENT, COUNT A Count of an event.
[, STAT, ERRMSG])

FAILED IMAGES ([TEAM, KIND]) T Indices of failed images.
GET TEAM ([LEVEL]) T Team value.
IMAGE STATUS (IMAGE [, TEAM]) E Status of images.
STOPPED IMAGES ([TEAM, KIND]) T Indices of stopped images.
TEAM ID ([TEAM]) T Team identifier.

{In 13.5 Standard generic intrinsic procedures, Table 13.1, edit the entries for ATOMIC DEFINE, ATOMIC REF,1

IMAGE INDEX, MOVE ALLOC, NUM IMAGES, and THIS IMAGE, as modified by ISO/IEC 1539-1:2010/Cor2

1:2012, as follows}3

ATOMIC DEFINE (ATOM, VALUE
:
[,
::::::
STAT]) A Define a variable atomically.

ATOMIC REF (VALUE, ATOM
:
[,
::::::
STAT]) A Reference a variable atomically.

IMAGE INDEX (COARRAY, SUB)
::
or I Image index from cosubscripts.

::::::::::::
(COARRAY,

:::::
SUB,

::::::::
TEAM)

::
or

::::::::::::
(COARRAY,

:::::
SUB,

:::::::
TEAM

::::
ID)

MOVE ALLOC (FROM, TO
:
[,
::::::
STAT,

:::::::::::
ERRMSG]) PS Move an allocation.

NUM IMAGES (
:::::::::
[FAILED])

::
or T Number of images.

::::::::
(TEAM[,

::::::::::
FAILED])

::
or

:::::::
(TEAM

::::
ID[,

::::::::::
FAILED])

THIS IMAGE (
:::::::
[TEAM]) T Index of the invoking image.

THIS IMAGE (COARRAY
:
[,
:::::::
TEAM])

::
or T Cosubscript(s) for this image.

(COARRAY, DIM
:
[,
::::::::
TEAM])

{In 13.5, Standard generic intrinsic procedures, paragraph 3, insert “in the initial team” after “image 1”}4

{In 13.7 Specifications of the standard intrinsic procedures, insert subclauses 7.4.1 through 7.4.20 of this Technical5

Specification in order alphabetically, with subclause numbers adjusted accordingly.}6

37

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

{In 13.7.20 ATOMIC DEFINE, edit the subclause title as follows}1

13.7.20 ATOMIC DEFINE (ATOM, VALUE
:::::::
[,STAT])2

{In 13.7.20 ATOMIC DEFINE, add the argument description as follows}3

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.4

{In 13.7.21 ATOMIC REF, edit the subclause title as follows}5

13.7.21 ATOMIC REF (VALUE, ATOM
:::::::
[,STAT])6

{In 13.7.21 ATOMIC REF, add the argument description and a paragraph as follows}7

STAT (optional) shall be a scalar of type integer. It is an INTENT(OUT) argument.8

If an error condition occurs, the VALUE argument becomes undefined.9

{In 13.7.79 IMAGE INDEX, edit the subclause title as follows}10

13.7.79 IMAGE INDEX (COARRAY, SUB)
::
or

::::::::
IMAGE

:::::::
INDEX

::::::::::::
(COARRAY,

:::::
SUB,

::::::::
TEAM)

::
or

::::::::
IMAGE

:::::::
INDEX11

::::::::::::
(COARRAY,

:::::
SUB,

:::::::
TEAM

:::
ID)12

{In 13.7.79 IMAGE INDEX, edit the COARRAY argument description as follows}13

COARRAY shall be a coarray of any type.
::
If

:::
the

::::::::
function

::
is
::::::::
invoked

::::
with

::
a
:::::::
TEAM

:::
ID

::::::::::
argument,

::
it

:::::
shall

::
be14

::::::::::
established

::
in

:::
an

::::::::
ancestor

::
of

::::
the

::::::::
specified

:::::
team.

:::::::::::
Otherwise,

::
it

::::
shall

:::
be

::::::::::
established

:::
in

:::
the

::::::::
specified15

:::::
team.16

{In 13.7.79 IMAGE INDEX, add the arguments descriptions as follows}17

TEAM shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic module.18

Its value shall represent an ancestor team.19

TEAM ID shall be a positive scalar integer. Its value shall be that of a team identifier for a team that was20

formed by execution of a FORM TEAM statement for the current team.21

If TEAM or TEAM ID appears, it specifies the team. Otherwise, the team specified is the current team.22

{In 13.7.79 IMAGE INDEX, replace paragraph 5 with}23

Result Value. If the value of SUB is a valid sequence of cosubscripts for COARRAY in the specified team, the24

result is the index of the corresponding image in that team. Otherwise, the result is zero.25

{In 13.7.118 MOVE ALLOC, edit the subclause title as follows}26

13.7.118 MOVE ALLOC (FROM, TO
:
[,
:::::::
STAT,

::::::::::
ERRMSG])27

{In 13.7.118 MOVE ALLOC, add the arguments descriptions as follows}28

STAT (optional) shall be a scalar of type default integer. It is an INTENT(OUT) argument.29

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.30

{In 13.7.118 MOVE ALLOC, replace paragraphs 4 through 6 and the paragraph that was added by ISO/IEC31

1539-1:2010/Cor 2:2013 by paragraphs 4 through 8 of 7.5.3 of this Technical Specification, deleting “of ISO/IEC32

1539-1:2010” in paragraph 5.}33

{In 13.7.126 NUM IMAGES, edit the subclause title as follows}34

38

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

13.7.126 NUM IMAGES (
:::::::::
[FAILED])

::
or

:::::
NUM

:::::::::
IMAGES

:::::::::
(TEAM[,

::::::::::
FAILED])

:::
or

:::::
NUM

:::::::::
IMAGES

::::::::
(TEAM

::::
ID[,1

:::::::::
FAILED])2

{In 13.7.126 NUM IMAGES, replace paragraph 3 with}3

Arguments.4

TEAM shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic module.5

Its value shall represent an ancestor team.6

TEAM ID shall be a positive scalar integer. Its value shall be that of a team identifier for a team that was7

formed by execution of a FORM TEAM statement for the current team.8

FAILED (optional) shall be a scalar of type LOGICAL. Its value determines whether the result is the number of9

failed images or the number of nonfailed images. It is an INTENT(IN) argument.10

{In 13.7.126 NUM IMAGES, replace paragraph 5 with}11

Result Value.12

If TEAM or TEAM ID appears, it specifies the team. Otherwise, the team specified is the current team.13

If FAILED is not present, the result is the number of images in the team specified. If FAILED is present with14

the value true, the result is the number of failed images in the team specified; otherwise, the result is the number15

of nonfailed images in the team specified.16

{In 13.7.165, as modified by ISO/IEC 1539-1:2010/Cor 1:2012, THIS IMAGE () or THIS IMAGE (COARRAY)17

or THIS IMAGE (COARRAY, DIM) edit the subclause title as follows }18

13.7.165 THIS IMAGE (
::::::::
[TEAM]) or THIS IMAGE (COARRAY

:
[,
:::::::
TEAM]) or THIS IMAGE (COARRAY, DIM19

:
[,
:::::::
TEAM])20

{In 13.7.165, as modified by ISO/IEC 1539-1:2010/Cor 1:2012, THIS IMAGE () or THIS IMAGE (COARRAY)21

or THIS IMAGE (COARRAY, DIM) insert a new argument at the end of paragraph 3 }22

TEAM (optional) shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV intrinsic23

module. It shall not be a coarray. Its value shall represent an ancestor team. If COARRAY24

appears, it shall be established for TEAM.25

{In 13.7.165, as modified by ISO/IEC 1539-1:2010/Cor 1:2012, THIS IMAGE () or THIS IMAGE (COARRAY)26

or THIS IMAGE (COARRAY, DIM) at the end of paragraph 5 add }27

Case (iv): The result of THIS IMAGE (TEAM) is a scalar with a value equal to the index of the invoking28

image in the team specified by the value of TEAM.29

Case (v): The result of THIS IMAGE (COARRAY, TEAM) is the sequence of cosubscript values for30

COARRAY that would specify the invoking image in the team specified by the value of TEAM.31

Case (vi): The result of THIS IMAGE (COARRAY, DIM, TEAM) is the value of cosubscript DIM in the32

sequence of cosubscript values for COARRAY that would specify the invoking image in the team33

specified by the value of TEAM.34

{In 13.7.172 UCOBOUND, edit the Result Value as follows.}35

The final upper cobound is the final cosubscript in the cosubscript list for the coarray that selects the image with36

index NUM IMAGES()
::::
equal

:::
to

:::
the

::::::::
number

::
of

:::::::
images

::
in

:::
the

:::::::
current

:::::
team

:::::
when

::::
the

:::::::
coarray

::::
was

:::::::::::
established.37

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause}38

13.8.2.7a CURRENT TEAM39

The value of the default integer scalar constant CURRENT TEAM identifies the current team in an invocation40

39

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

of the function GET TEAM.1

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.8a consisting of subclause2

6.2 EVENT TYPE of this Technical Specification, but omitting the final sentence of the first paragraph and the3

fourth sentence of the second paragraph.}4

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause}5

13.8.2.9a INITIAL TEAM6

The value of the default integer scalar constant INITIAL TEAM identifies the initial team in an invocation of7

the function GET TEAM.8

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause}9

13.8.2.19a PARENT TEAM10

The value of the default integer scalar constant PARENT TEAM identifies the parent team in an invocation of11

the function GET TEAM.12

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.21b consisting of subclause13

5.8 STAT FAILED IMAGE of this Technical Specification, but omitting the final two sentences of the first14

paragraph.}15

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, append a new subclause 13.8.2.26 consisting of subclause16

5.2 TEAM TYPE of this Technical Specification, but omitting the final sentence of the first paragraph.}17

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, append a new subclause}18

13.8.2.26a Uniqueness of values of named constants19

The values of the named constants IOSTAT INQUIRE INTERNAL UNIT, STAT FAILED IMAGE, STAT -20

LOCKED, STAT LOCKED OTHER IMAGE, STAT STOPPED IMAGE, and STAT UNLOCKED shall be dis-21

tinct.22

8.10 Edits to clause 1623

{In 16.4 Statement and construct entities, in paragraph 1, after “DO CONCURRENT” replace “or” with a24

comma; after “ASSOCIATE construct” insert “, or as a coarray specified by a codimension-decl in a CHANGE25

TEAM construct,”}26

{In 16.4 Statement and construct entities, add the following new paragraph after paragraph 8}27

The associate names of a CHANGE TEAM construct have the scope of the block. They have the declared type,28

dynamic type, type parameters, rank, bounds, and cobounds as specified in 8.1.4a.29

{In 16.5.1.6 Construct association, append the following sentence to the paragraph 1}30

Execution of a CHANGE TEAM statement establishes an association between each coselector and the corres-31

ponding associate name of the construct.32

{In 16.6.7, Variable definition context, after item (13) insert a new list item}33

(13a) a coarray in a codimension-decl in a CHANGE TEAM construct if the coarray named by the corresponding34

coselector-name of that construct appears in a variable definition context within that construct;35

{At the end of the list of variable definition contexts in 16.6.7 para 1, replace the “.” at the end of entry (15)36

40

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

with “;” and add two new entries as follows}1

(16) a team-variable in a FORM TEAM statement;2

(17) an event-variable in an EVENT POST or EVENT WAIT statement.3

8.11 Edits to annex A4

{In A.2 Processor dependencies, in the list item beginning “the effect of calling COMMAND ARGUMENT -5

COUNT”, insert “in the initial team” after “image 1”.}6

{In A.2 Processor dependencies, in the list item beginning “the value assigned to a CMDSTAT”, replace “CM-7

DSTAT or STATUS” with “CMDSTAT, STAT, or STATUS”.}8

{At the end of A.2 Processor dependencies, replace the final full stop with a semicolon and add new items as9

follows}10

• the conditions that cause an image to fail;11

• the manner in which the stop code of the FAIL IMAGE statement is made available;12

• the computed value of the CO SUM intrinsic subroutine;13

• the computed value of the CO REDUCE intrinsic subroutine;14

• how sequences of event posts in unordered segments interleave with each other;15

• the image index value assigned by a FORM TEAM statement without a NEW INDEX= specifier.16

8.12 Edits to annex C17

{In C.5 Clause 8 notes, at the end of the subclause insert subcauses A.1.1, A.1.2, A.1.3, A.1.4, A.2.1, A.2.2, and18

A.2.3 from this Technical Specification as subclauses C.5.5 to C.5.11.}19

{In C.10 Clause 13 notes, at the end of the subclause insert subcauses A.3.1 and A.3.2 from this Technical20

Specification as subclauses C.10.2 and C.10.3.}21

41

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

42

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

Annex A1

(Informative)2

Extended notes3

A.1 Clause 5 notes4

A.1.1 Example using three teams5

Compute fluxes over land, sea and ice in different teams based on surface properties. Assumption: Each image6

deals with areas containing exactly one of the three surface types.7

SUBROUTINE COMPUTE_FLUXES(FLUX_MOM, FLUX_SENS, FLUX_LAT)8

USE,INTRINSIC :: ISO_FORTRAN_ENV9

REAL, INTENT(OUT) :: FLUX_MOM(:,:), FLUX_SENS(:,:), FLUX_LAT(:,:)10

INTEGER, PARAMETER :: LAND=1, SEA=2, ICE=311

CHARACTER(LEN=10) :: SURFACE_TYPE12

INTEGER :: MY_SURFACE_TYPE, N_IMAGE13

TYPE(TEAM_TYPE) :: TEAM_SURFACE_TYPE14

15

CALL GET_SURFACE_TYPE(THIS_IMAGE(), SURFACE_TYPE) ! Surface type16

SELECT CASE (SURFACE_TYPE) ! of the executing image17

CASE (’LAND’)18

MY_SURFACE_TYPE = LAND19

CASE (’SEA’)20

MY_SURFACE_TYPE = SEA21

CASE (’ICE’)22

MY_SURFACE_TYPE = ICE23

CASE DEFAULT24

ERROR STOP25

END SELECT26

FORM TEAM(MY_SURFACE_TYPE, TEAM_SURFACE_TYPE)27

28

CHANGE TEAM(TEAM_SURFACE_TYPE)29

SELECT CASE (TEAM_ID())30

CASE (LAND) ! Compute fluxes over land surface31

CALL COMPUTE_FLUXES_LAND(FLUX_MOM, FLUX_SENS, FLUX_LAT)32

CASE (SEA) ! Compute fluxes over sea surface33

CALL COMPUTE_FLUXES_SEA(FLUX_MOM, FLUX_SENS, FLUX_LAT)34

CASE (ICE) ! Compute fluxes over ice surface35

CALL COMPUTE_FLUXES_ICE(FLUX_MOM, FLUX_SENS, FLUX_LAT)36

CASE DEFAULT37

ERROR STOP38

END SELECT39

END TEAM40

END SUBROUTINE COMPUTE_FLUXES41

A.1.2 Example involving failed images42

Parallel algorithms often use work sharing schemes based on a specific mapping between image indices and global43

data addressing. To allow such programs to continue when one or more images fail, spare images can be used44

43

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

to re-establish execution of the algorithm with the failed images replaced by spare images, while retaining the1

image mapping.2

The following example illustrates how this might be done. In this setup, failure cannot be tolerated for image 13

in the initial team.4

PROGRAM possibly_recoverable_simulation5

USE, INTRINSIC :: iso_fortran_env6

IMPLICIT NONE7

INTEGER, ALLOCATABLE :: failed_img(:)8

INTEGER :: images_used, i, images_spare, status9

INTEGER :: id[*], me[*]10

TYPE(team_type) :: simulation_team11

LOGICAL :: read_checkpoint, done[*]12

13

images_used = ... ! A value slightly less num_images()14

images_spare = num_images() - images_used15

read_checkpoint = this_image() > images_used16

17

setup : DO18

me = this_image()19

id = 120

IF (me > images_used) id = 221

!22

! Set up spare images as replacement for failed ones23

IF (image_status(1) == STAT_FAILED_IMAGE) &24

ERROR STOP ’cannot recover’25

IF (this_image() == 1) THEN26

failed_img = failed_images()27

k = images_used28

DO i = 1, size(failed_img)29

DO k = k+1, num_images()30

IF (image_status(k) == 0) EXIT31

END DO32

IF (k > num_images()) ERROR STOP ’cannot recover’33

me[k] = failed_img(i)34

id[k] = 135

END DO36

images_used = k37

END IF38

!39

! Set up a simulation team of constant size.40

! id == 2 does not participate in team execution41

FORM TEAM (id, simulation_team, NEW_INDEX=me, STAT=status)42

simulation : CHANGE TEAM (simulation_team, STAT=status)43

IF (status==STAT_FAILED_IMAGE) EXIT simulation44

IF (TEAM_ID() == 1) THEN45

iter : DO46

CALL simulation_procedure(read_checkpoint, status, done)47

! simulation_procedure:48

! sets up required objects (maybe coarrays)49

! reads checkpoint if requested50

! returns status on its internal synchronizations51

! returns .TRUE. in done once complete52

read_checkpoint = .FALSE.53

IF (status == STAT_FAILED_IMAGE) THEN54

44

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

read_checkpoint = .TRUE.1

EXIT simulation2

ELSE IF (done)3

EXIT iter4

END IF5

END DO iter6

END IF7

END TEAM simulation (STAT=status)8

SYNC ALL (STAT=status)9

IF (this_image() > images_used) done = done[1]10

IF (done) EXIT setup11

END DO setup12

END PROGRAM possibly_recoverable_simulation13

Supporting fail-safe execution imposes obligations on library writers who use the parallel language facilities. Every14

synchronization statement, allocation or deallocation of coarrays, or invocation of a collective procedure must15

specify a synchronization status variable, and implicit deallocation of coarrays must be avoided. In particular,16

coarray module variables that are allocated inside the team execution context are not persistent.17

A.1.3 Accessing coarrays in sibling teams18

The following program shows the subdivision of a 4 x 4 grid into 2 x 2 teams and addressing of sibling teams.19

PROGRAM DEMO20

! Initial team : 16 images. Algorithm design is a 4 x 4 grid.21

! Desire 4 teams, for the upper left (UL), upper right (UR),22

! Lower left (LL), lower right (LR)23

USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: team_type24

TYPE (team_type) :: t25

INTEGER,PARAMETER :: UL=11, UR=22, LL=33, LR=4426

REAL :: A(10,10)[4,*]27

INTEGER :: mype, teamid, newpe28

INTEGER :: UL_image_list(4) = [1, 2, 5, 6], &29

LL_image_list(4) = UL_image_list + 2, &30

UR_image_list(4) = UL_image_list + 8, &31

LR_image_list(4) = UL_image_list + 1032

33

mype = THIS_IMAGE()34

IF (any(mype == UL_image_list)) teamid = UL35

IF (any(mype == LL_image_list)) teamid = LL36

IF (any(mype == UR_image_list)) teamid = UR37

IF (any(mype == LR_image_list)) teamid = LR38

FORM TEAM (teamid, t)39

40

a = 3.1441

42

CHANGE TEAM (t, b[2,*] => a)43

! Inside change team, image pattern for B is a 2 x 2 grid44

b(5,5) = b(1,1)[2,1]45

46

! Outside the team addressing:47

48

newpe = THIS_IMAGE()49

SELECT CASE (team_id())50

CASE (UL)51

45

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

IF (newpe == 3) THEN1

b(:,10) = b(:,1)[1, 1, TEAM_ID=UR] ! Right column of UL gets2

! left column of UR3

ELSE IF (newpe == 4) THEN4

b(:,10) = b(:,1)[2, 1, TEAM_ID=UR]5

END IF6

CASE (LL)7

! Similar to complete column exchange across middle of the8

! original grid9

END SELECT10

END TEAM11

END PROGRAM DEMO12

A.1.4 Reducing the codimension of a coarray13

This example illustrates how to use a subroutine to coordinate cross-image access to a coarray for row and column14

processing.15

PROGRAM row_column16

USE, INTRINSIC :: iso_fortran_env, ONLY : team_type17

IMPLICIT NONE18

19

TYPE(team_type), target :: row_team, col_team20

TYPE(team_type), pointer :: used_team21

REAL, ALLOCATABLE :: a(:,:)[:,:]22

INTEGER :: ip, na, p, me(2)23

24

p = ... ; q = ... ! such that p*q == num_images()25

na = ... ! local problem size26

27

! allocate and initialize data28

ALLOCATE(a(na,na)[p,*])29

a = ...30

31

me = this_image(a)32

33

FORM TEAM(me(1), row_team, NEW_INDEX=me(2))34

FORM TEAM(me(2), col_team, NEW_INDEX=me(1))35

36

! make a decision on whether to process by row or column37

IF (...) THEN38

used_team => row_team39

ELSE40

used_team => col_team41

END IF42

43

... ! do local computations on a44

45

CHANGE TEAM (used_team)46

47

CALL further_processing(a, ...)48

49

END TEAM50

CONTAINS51

SUBROUTINE further_processing(a, ...)52

46

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

REAL :: a(:,:)[*]1

INTEGER :: ip2

3

! update ip-th row or column submatrix4

a(:,:)[ip] = ...5

6

SYNC ALL7

... ! do further local computations on a8

9

END SUBROUTINE10

END PROGRAM row_column11

A.2 Clause 6 notes12

A.2.1 EVENT QUERY example13

The following example illustrates the use of events via a program in which image 1 acts as master and distributes14

work items to the other images. Only one work item at a time can be active on a worker image, and each deals15

with the result (e.g. via I/O) without directly feeding data back to the master image.16

Because the work items are not expected to be balanced, the master keeps cycling through all the images to find17

one that is waiting for work.18

An event is posted by each worker to indicate that it has completed its work item. Since the corresponding19

variables are needed only on the master, we place them in an allocatable array component of a coarray. An event20

on each worker is needed for the master to post the fact that it has made a work item available for it.21

PROGRAM work_share22

USE, INTRINSIC :: iso_fortran_env, ONLY: event_type23

USE :: mod_work, ONLY: & ! Module that creates work items24

work, & ! Type for holding a work item25

create_work_item, & ! Function that creates work item26

process_item, & ! Function that processes an item27

work_done ! Logical function that returns true28

! if all work done29

30

TYPE :: worker_type31

TYPE(event_type), ALLOCATABLE :: free(:)32

END TYPE33

TYPE(event_type) :: submit[*] ! Post when work ready for a worker34

TYPE(worker_type) :: worker[*] ! Post when worker is free35

TYPE(work) :: work_item[*] ! Holds all the data for a work item36

INTEGER :: count, i, nbusy[*]37

38

IF (this_image() == 1) THEN39

! Get started40

ALLOCATE(worker%free(2:num_images()))41

nbusy = 0 ! This holds the number of workers working42

DO i = 2, num_images() ! Start the workers working43

IF (work_done()) EXIT44

nbusy = nbusy + 145

work_item[i] = create_work_item()46

EVENT POST (submit[i])47

END DO48

! Main work distribution loop49

47

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

master : DO1

image : DO i = 2, num_images()2

CALL EVENT_QUERY(worker%free(i), count)3

IF (count == 0) CYCLE image! Worker is not free4

EVENT WAIT (worker%free(i))5

nbusy = nbusy - 16

IF (work_done()) CYCLE7

nbusy = nbusy + 18

work_item[i] = create_work_item()9

EVENT POST (submit[i])10

END DO image11

IF (nbusy==0) THEN ! All done. Exit on all images.12

DO i = 2, num_images()13

EVENT POST (submit[i])14

END DO15

EXIT master16

END IF17

END DO master18

ELSE19

! Work processing loop20

worker : DO21

EVENT WAIT (submit)22

IF (nbusy[1] == 0) EXIT23

CALL process_item(work_item)24

EVENT POST (worker[1]%free(this_image()))25

END DO worker26

END IF27

END PROGRAM work_share28

A.2.2 EVENT QUERY example that tolerates image failure29

This example is an adaptation of the example of A.2.1 to make it able to execute in the presence of the failure of30

one or more of the worker images. The function create work item now accepts an integer argument to indicate31

which work item is required. It is assumed that the work items are indexed 1, 2, It is also assumed that if32

an image fails while processing a work item, that work item can subsequently be processed by another image.33

PROGRAM work_share34

USE, INTRINSIC :: iso_fortran_env, ONLY: event_type35

USE :: mod_work, ONLY: & ! Module that creates work items36

work, & ! Type for holding a work item37

create_work_item, & ! Function that creates work item38

process_item, & ! Function that processes an item39

work_done ! Logical function that returns true40

! if all work done41

42

TYPE :: worker_type43

TYPE(event_type), ALLOCATABLE :: free(:)44

END TYPE45

TYPE(event_type) :: submit[*] ! Whether work ready for a worker46

TYPE(worker_type) :: worker[*] ! Whether worker is free47

TYPE(work) :: work_item[*] ! Holds all the data for a work item48

INTEGER :: count, i, k, kk, nbusy[*], np, status49

INTEGER, ALLOCATABLE :: working(:) ! Items being worked on50

INTEGER, ALLOCATABLE :: pending(:) ! Items pending after image failure51

52

48

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

IF (this_image() == 1) THEN1

! Get started2

ALLOCATE(worker%free(2:num_images()))3

ALLOCATE(working(2:num_images()), pending(num_images()-1))4

nbusy = 0 ! This holds the number of workers working5

k = 1 ! Index of next work item6

np = 0 ! Number of work items in array pending7

DO i = 2, num_images() ! Start the workers working8

IF (work_done()) EXIT9

working(i) = 010

CALL EVENT_QUERY(submit[i],count,STAT=status) ! Test image i11

IF (status==STAT_FAILED_IMAGE) CYCLE12

work_item[i] = create_work_item(k)13

working(i) = k14

k = k + 115

nbusy = nbusy + 116

EVENT POST (submit[i], STAT=status)17

END DO18

! Main work distribution loop19

master : DO20

image : DO i = 2, num_images()21

CALL EVENT_QUERY(submit[i],count,STAT=status) ! Test image i22

IF (status==STAT_FAILED_IMAGE) THEN ! Image i has failed23

IF (working(i)>0) THEN ! It failed while working24

np = np + 125

pending(np) = working(i)26

working(i) = 027

END IF28

CYCLE image29

END IF30

CALL EVENT_QUERY(worker%free(i), count)31

IF (count == 0) CYCLE image ! Worker is not free32

EVENT WAIT (worker%free(i))33

nbusy = nbusy - 134

IF (np>0) THEN35

kk = pending(np)36

np = np - 137

ELSE38

IF (work_done()) CYCLE image39

kk = k40

k = k + 141

END IF42

nbusy = nbusy + 143

working(i) = kk44

CALL EVENT_QUERY(submit[i],count,STAT=status) ! Test image i45

IF (status/=STAT_FAILED_IMAGE) &46

work_item[i] = create_work_item(kk)47

EVENT POST (submit[i],STAT=status)48

! If image i has failed, this will not hang and the failure49

! will be handled on the next iteration of the loop50

END DO image51

IF (nbusy==0) THEN ! All done. Exit on all images.52

DO i = 2, num_images()53

EVENT POST (submit[i],STAT=status)54

IF (status==STAT_FAILED_IMAGE) CYCLE55

49

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

END DO1

EXIT master2

END IF3

END DO master4

ELSE5

! Work processing loop6

worker : DO7

EVENT WAIT (submit)8

IF (nbusy[1] == 0) EXIT worker9

CALL process_item(work_item)10

EVENT POST (worker[1]%free(this_image()))11

END DO worker12

END IF13

END PROGRAM work_share14

A.2.3 EVENTS example15

A tree is a graph in which every node except one has a single “parent” node to which it is connected by an edge.16

The node without a parent is the “root”. The nodes that have a given node as parent are the “children” of that17

node. The root is at level 1, its children are at level 2, etc.18

A multifrontal code to solve a sparse set of linear equations involves a tree. Work at a node starts after work at19

all its children is complete and their data has been passed to it.20

Here we assume that all the nodes have been assigned to images. Each image has a list of its nodes and these21

are ordered in decreasing tree level (all those at level L preceding those at level L − 1). For each node, array22

elements hold the number of children, details about the parent and an event variable. This allows the processing23

to proceed asynchronously subject to the rule that a parent must wait for all its children as follows:24

PROGRAM TREE25

USE, INTRINSIC :: ISO_FORTRAN_ENV26

INTEGER,ALLOCATABLE :: NODE(:) ! Tree nodes that this image handles27

INTEGER,ALLOCATABLE :: NC(:) ! NODE(I) has NC(I) children28

INTEGER,ALLOCATABLE :: PARENT(:), SUB(:)29

! The parent of NODE(I) is NODE(SUB(I))[PARENT(I)]30

TYPE(EVENT_TYPE),ALLOCATABLE :: DONE(:)[*]31

INTEGER :: I, J, STATUS32

! Set up the tree, including allocation of all arrays.33

DO I = 1, SIZE(NODE)34

! Wait for children to complete35

EVENT WAIT(DONE(I),UNTIL_COUNT=NC(I),STAT=STATUS)36

IF (STATUS/=0) EXIT37

38

! Process node, using data from children39

IF (PARENT(I)>0) THEN40

! Node is not the root.41

! Place result on image PARENT(I) for node NODE(SUB)[PARENT(I)]42

! Tell PARENT(I) that this has been done.43

EVENT POST(DONE(SUB(I))[PARENT(I)],STAT=STATUS)44

IF (STATUS/=0) EXIT45

END IF46

END DO47

END PROGRAM TREE48

50

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

A.3 Clause 7 notes1

A.3.1 Collective subroutine examples2

The following example computes a dot product of two scalar coarrays using the co sum intrinsic to store the3

result in a noncoarray scalar variable:4

subroutine codot(x,y,x_dot_y)5

real :: x[*],y[*],x_dot_y6

x_dot_y = x*y7

call co_sum(x_dot_y)8

end subroutine codot9

The function below demonstrates passing a noncoarray dummy argument to the co max intrinsic. The function10

uses co max to find the maximum value of the dummy argument across all images. Then the function flags all11

images that hold values matching the maximum. The function then returns the maximum image index for an12

image that holds the maximum value:13

function find_max(j) result(j_max_location)14

integer, intent(in) :: j15

integer j_max,j_max_location16

call co_max(j,j_max)17

! Flag images that hold the maximum j18

if (j==j_max) then19

j_max_location = this_image()20

else21

j_max_location = 022

end if23

! Return highest image index associated with a maximal j24

call co_max(j_max_location)25

end function find_max26

A.3.2 Atomic memory consistency27

A.3.2.1 Relaxed memory model28

Parallel programs sometimes have apparently impossible behavior because data transfers and other messages can29

be delayed, reordered and even repeated, by hardware, communication software, and caching and other forms of30

optimization. Requiring processors to deliver globally consistent behavior is incompatible with performance on31

many systems. Fortran specifies that all ordered actions will be consistent (2.3.5 and 8.5 in ISO/IEC 1539-1:2010),32

but all consistency between unordered segments is deliberately left processor dependent or undefined. Depending33

on the hardware, this can be observed even when only two images and one mechanism are involved.34

A.3.2.2 Examples with atomic operations35

When variables are being referenced (atomically) from segments that are unordered with respect to the segment36

that is is atomically defining or redefining the variables, the results are processor dependent. This supports use37

of so-called “relaxed memory model” architectures, which can enable more efficient execution on some hardware38

implementations.39

The following examples assume the following declarations:40

MODULE example41

USE,INTRINSIC :: ISO_FORTRAN_ENV42

INTEGER(ATOMIC_INT_KIND) :: x[*] = 0, y[*] = 043

51

WG5/N2027 TS 18508 Additional Parallel Features in Fortran 2014/8/22

Example 1:1

With x[j] and y[j] still in their initial state (both zero), image j executes the following sequence of statements:2

CALL ATOMIC_DEFINE(x,1)3

CALL ATOMIC_DEFINE(y,1)4

and image k executes the following sequence of statements:5

DO6

CALL ATOMIC_REF(tmp,y[j])7

IF (tmp==1) EXIT8

END DO9

CALL ATOMIC_REF(tmp,x[j])10

PRINT *,tmp11

The final value of tmp on image k can be either 0 or 1. That is, even though image j thinks it wrote x[j] before12

writing y[j], this ordering is not guaranteed on image k.13

There are many aspects of hardware and software implementation that can cause this effect, but conceptually this14

example can be thought of as the change in the value of y propagating faster across the inter-image connections15

than the change in the value of x.16

Changing the execution on image j by inserting17

SYNC MEMORY18

in between the definitions of x and y is not sufficient to prevent unexpected results; even though x and y are19

being updated in ordered segments, the references from image k are both from a segment that is unordered with20

respect to image j.21

To guarantee the expected value for tmp of 1 at the end of the code sequence on image k, it is necessary to ensure22

that the atomic reference on image k is in a segment that is ordered relative to the segment on image j that23

defined x[j]; SYNC MEMORY is certainly necessary, but not sufficient unless it is somehow synchronized.24

Example 2:25

With the initial state of x and y on image j (i.e. x[j] and y[j]) still being zero, execution of26

CALL ATOMIC_REF(tmp,x[j])27

CALL ATOMIC_DEFINE(y[j],1)28

PRINT *,tmp29

on image k1, and execution of30

CALL ATOMIC_REF(tmp,y[j])31

CALL ATOMIC_DEFINE(x[j],1)32

PRINT *,tmp33

on image k2, in unordered segments, might print the value 1 both times.34

This can happen by such mechanisms as “load buffering”; one might imagine that what is happening is that the35

writes (ATOMIC_DEFINE) are overtaking the reads (ATOMIC_REF).36

It is likely that insertion of SYNC MEMORY between the calls to ATOMIC_REF and ATOMIC_DEFINE will be sufficient to37

prevent this anomalous behavior, but that is only guaranteed by the standard if the SYNC MEMORY executions38

cause an ordering between the relevant segments on images k1 and k2.39

52

2014/8/22 TS 18508 Additional Parallel Features in Fortran WG5/N2027

Example 3:1

Because there are no segment boundaries implied by collective subroutines, with the initial state as before,2

execution of3

IF (THIS_IMAGE()==1) THEN4

CALL ATOMIC_DEFINE(x[3],23)5

y = 426

ENDIF7

CALL CO_BROADCAST(y,1)8

IF (THIS_IMAGE()==2) THEN9

CALL ATOMIC_REF(tmp,x[3])10

PRINT *,y,tmp11

END IF12

could print the values 42 and 0.13

Example 4:14

Assuming the declarations15

INTEGER(ATOMIC_INT_KIND) :: x[*]= 0, z = 016

the statements17

CALL ATOMIC_ADD(x[1], 1) ! (A)18

IF (THIS_IMAGE() == 2) THEN19

wait : DO20

CALL ATOMIC_REF(z, x[1]) ! (B)21

IF (z == NUM_IMAGES()) EXIT wait22

END DO wait ! (C)23

END IF24

will execute the “wait” loop on image 2 until all images have completed statement (A). The updates of x[1] are25

performed by each image in the same manner, but arbitrary order. Because the result from the complete set26

of updates will eventually become visible by execution of statement (B) for some loop iteration on image 2, the27

termination condition is guaranteed to be eventually fulfilled, provided that no image failure occurs, every image28

executes the above code, and no other code is executed in an unordered segment that performs updates to x[1].29

Furthermore, if two SYNC MEMORY statements are inserted in the above code before statement (A) and after30

statement (C), respectively, the segment started by the second SYNC MEMORY on image 2 is ordered after the31

segments on all images that end with the first SYNC MEMORY.32

53

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Compatibility
	4.1 New intrinsic procedures
	4.2 Fortran 2008 compatibility

	5 Teams of images
	5.1 Introduction
	5.2 TEAM_TYPE
	5.3 CHANGE TEAM construct
	5.4 Image selectors
	5.5 FORM TEAM statement
	5.6 SYNC TEAM statement
	5.7 FAIL IMAGE statement
	5.8 STAT_FAILED_IMAGE

	6 Events
	6.1 Introduction
	6.2 EVENT_TYPE
	6.3 EVENT POST statement
	6.4 EVENT WAIT statement

	7 Intrinsic procedures
	7.1 General
	7.2 Atomic subroutines
	7.3 Collective subroutines
	7.4 New intrinsic procedures
	7.4.1 ATOMIC_ADD (ATOM, VALUE [, STAT])
	7.4.2 ATOMIC_AND (ATOM, VALUE [, STAT])
	7.4.3 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])
	7.4.4 ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])
	7.4.5 ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])
	7.4.6 ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])
	7.4.7 ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])
	7.4.8 ATOMIC_OR (ATOM, VALUE [, STAT])
	7.4.9 ATOMIC_XOR (ATOM, VALUE [, STAT])
	7.4.10 CO_BROADCAST (A, SOURCE_IMAGE [, STAT, ERRMSG])
	7.4.11 CO_MAX (A [, RESULT_IMAGE, STAT, ERRMSG])
	7.4.12 CO_MIN (A [, RESULT_IMAGE, STAT, ERRMSG])
	7.4.13 CO_REDUCE (A, OPERATOR [, RESULT_IMAGE, STAT, ERRMSG])
	7.4.14 CO_SUM (A [, RESULT_IMAGE, STAT, ERRMSG])
	7.4.15 EVENT_QUERY (EVENT, COUNT [, STAT, ERRMSG])
	7.4.16 FAILED_IMAGES ([TEAM, KIND])
	7.4.17 GET_TEAM ([LEVEL])
	7.4.18 IMAGE_STATUS (IMAGE, [TEAM])
	7.4.19 STOPPED_IMAGES ([TEAM, KIND])
	7.4.20 TEAM_ID ([TEAM])

	7.5 Modified intrinsic procedures
	7.5.1 ATOMIC_DEFINE and ATOMIC_REF
	7.5.2 IMAGE_INDEX
	7.5.3 MOVE_ALLOC
	7.5.4 NUM_IMAGES
	7.5.5 THIS_IMAGE

	8 Required editorial changes to ISO/IEC 1539-1:2010(E)
	8.1 General
	8.2 Edits to Introduction
	8.3 Edits to clause 1
	8.4 Edits to clause 2
	8.5 Edits to clause 4
	8.6 Edits to clause 6
	8.7 Edits to clause 8
	8.8 Edits to clause 9
	8.9 Edits to clause 13
	8.10 Edits to clause 16
	8.11 Edits to annex A
	8.12 Edits to annex C

	Annex A (informative) Extended notes
	A.1 Clause 5 notes
	A.1.1 Example using three teams
	A.1.2 Example involving failed images
	A.1.3 Accessing coarrays in sibling teams
	A.1.4 Reducing the codimension of a coarray

	A.2 Clause 6 notes
	A.2.1 EVENT_QUERY example
	A.2.2 EVENT_QUERY example that tolerates image failure
	A.2.3 EVENTS example

	A.3 Clause 7 notes
	A.3.1 Collective subroutine examples
	A.3.2 Atomic memory consistency

