
J3/16-247

Fortran 2015 Changes

SEPTEMBER 27, 2016

J3/16-247

 2

Revision History

Rev. Dates Reasons for change

0.1 Sep 27, 2016 Original Draft, Steve Lionel

Contents
Fortran 2015 Changes ... 1
1 Introduction ... 6

2 Reference .. 6
3 Data Declaration ... 6
3.1 Constant properties of an object declared in its entity-decl can be used in its

initialization. ... 6
4 Data Usage and Computation ... 7
4.1 The declared type of the value supplied for a polymorphic allocatable component in a

structure constructor is no longer required to be the same as the declared type of the

component. .. 7
4.2 Labeled DO loops have been redundant since Fortran 90 and are now specified to be

obsolescent. ... 7
4.3 The arithmetic IF statement has been deleted. ... 8
4.4 The EQUIVALENCE and COMMON statements and the block data program unit have

beenredundant since Fortran 90 and are now specified to be obsolescent. 8
4.5 The nonblock DO construct has been deleted. ... 8

4.6 FORALL is now specified to be obsolescent. .. 8

4.7 The type and kind of an implied DO variable in an array constructor or DATA

statement can be specified within the constructor or statement. ... 8
4.8 The locality of a variable used in a DO CONCURRENT construct can be explicitly

specified. ... 8
4.9 The SELECT RANK construct provides structured access to the elements of an

assumed-rank array. .. 8

5 Input/Output .. 8
5.1 The SIZE= specifier can be used with advancing input. .. 8
5.2 It is no longer prohibited to open a file on more than one unit. 9

5.3 The value assigned by the RECL= specifier in an INQUIRE statement has been

standardized. ... 9
5.4 The values assigned by the POS= and SIZE= specifiers in an INQUIRE statement for a

unit that has pending asynchronous operations have been standardized. 9

5.5 The G0.d edit descriptor can be used for list items of type Integer, Logical, and

Character. .. 9
5.6 The D, E, EN, and ES edit descriptors can have a field width of zero, analogous to the F

edit descriptor.. 10
5.7 The exponent width e in a data edit descriptor can be zero, analogous to a field width of

zero. 10
5.8 Floating-point formatted input accepts hexadecimal-significand numbers that conform

to ISO/IEC/IEEE 60559:2011... 10

J3/16-247

 3

5.9 The EX edit descriptor provides hexadecimal-significand formatted output conforming

to ISO/IEC/IEEE 60559:2011... 10
5.10 An error condition occurs if unacceptable characters are presented for logical or

numeric editing during execution of a formatted input statement. ... 10

6 Execution Control ... 10
6.1 The stop code in a STOP or ERROR STOP statement can be nonconstant. 10
6.2 Output of the stop code and exception summary from the STOP and ERROR STOP

statements can be controlled. .. 11
7 Intrinsic Procedures and Modules ... 11

7.1 In references to the intrinsic functions ALL, ANY, FINDLOC, IALL, IANY,

IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT,

SUM, and THIS_IMAGE, the actual argument for DIM can be a present optional dummy

argument. .. 11

7.2 In a reference to the intrinsic function CMPLX with an actual argument of type

complex, no keyword is needed for a KIND argument. ... 11

7.3 The new intrinsic function COSHAPE returns the coshape of a coarray. 11
7.4 The new intrinsic function OUT_OF_RANGE tests whether a numeric value can be

safely converted to a different type or kind. ... 11
7.5 The new intrinsic subroutine RANDOM_INIT establishes the initial state of the

pseudorandom number generator used by RANDOM_NUMBER. ... 12

7.6 The new intrinsic function REDUCE performs user-specified array reductions. 12
7.7 A processor is required to report use of a nonstandard intrinsic procedure, use of a

nonstandard intrinsic module, and use of a nonstandard procedure from a standard intrinsic

module... 12
7.8 Integer and logical arguments to intrinsic procedures and intrinsic module procedures

that were previously required to be of default kind no longer have that requirement, except for

RANDOM_SEED. .. 12
7.9 Specific names for intrinsic functions are now deemed obsolescent. 12
7.10 All standard procedures in the intrinsic module ISO_C_BINDING, other than

C_F_POINTER, are now pure. ... 12
7.11 The arguments to the intrinsic function SIGN can be of different kind. 12

7.12 Nonpolymorphic pointer arguments to the intrinsic functions EXTENDS_TYPE_OF

and SAME_TYPE_AS need not have defined pointer association status. 12

7.13 The effects of invoking the intrinsic procedures

COMMAND_ARGUMENT_COUNT, GET_COMMAND, and

GET_COMMAND_ARGUMENT, on images other than image one, are no longer processor

dependent. ... 12
7.14 Access to error messages from the intrinsic subroutines GET_COMMAND,

GET_COMMAND_ARGUMENT, and GET_ENVIRONMENT_VARIABLE is provided by

an optional ERRMSG argument. .. 13

8 Program units and procedures: .. 13
8.1 The IMPORT statement can appear in a contained subprogram or BLOCK construct,

and can restrict access via host association; diagnosis of violation of the IMPORT restrictions

is required.. 13
8.2 The GENERIC statement can be used to declare generic interfaces. 13
8.3 The ERROR STOP statement can appear in a pure subprogram. 13

J3/16-247

 4

8.4 The number of procedure arguments is used in generic resolution................................ 13

8.5 In a module, the default accessibility of entities accessed from another module can be

controlled separately from the default accessibility of entities declared in the using module. 13
8.6 An IMPLICIT NONE statement can require explicit declaration of the EXTERNAL

attribute throughout a scoping unit and its contained scoping units. .. 14
8.7 A defined operation need not specify INTENT (IN) for a dummy argument with the

VALUE attribute. .. 14
8.8 A defined assignment need not specify INTENT (IN) for the second dummy argument

if it has the VALUE attribute. ... 14

8.9 Procedures, including elemental procedures, can be invoked recursively by default; the

RECURSIVE keyword is advisory only. .. 14
8.10 The NON_RECURSIVE keyword specifies that a procedure is not recursive. 14
8.11 A dummy argument of a pure function is permitted in a variable definition context, if

it has the VALUE attribute. .. 14
9 Features previously described by ISO/IEC TS 29113:2012 ... 14

9.1 A dummy data object can assume its rank from its effective argument. 15
9.2 A dummy data object can assume the type from its effective argument, without having

the ability to perform type selection. .. 15
9.3 An interoperable procedure can have dummy arguments that are assumed-type and/or

assumed-rank. ... 15

9.4 An interoperable procedure can have dummy data objects that are allocatable, assumed-

shape, optional, or pointers. .. 15

9.5 The character length of a dummy data object of an interoperable procedure can be

assumed. .. 15
9.6 The argument to C_LOC can be a noninteroperable array. ... 15

9.7 The FPTR argument to C_F_POINTER can be a noninteroperable array pointer. 15

9.8 The argument to C_FUNLOC can be a noninteroperable procedure. The FPTR

argument to C_F_PROCPOINTER can be a noninteroperable procedure pointer................... 15
10 Changes to the intrinsic modules IEEE_ARITHMETIC, IEEE_EXCEPTIONS, and

IEEE_FEATURES for conformance with ISO/IEC/IEEE 60559:2011: 15
10.1 There is a new, optional, rounding mode IEEE_AWAY. The new type

IEEE_MODES_TYPE encapsulates all floating-point modes. Features associated with

subnormal numbers can be accessed with functions and types named . . .SUBNORMAL.. .

(the old . . .DENORMAL.. . names remain). .. 15
10.2 The standard intrinsic relational operations on IEEE numbers provide the

compareSignaling{relation} operations. ... 16
10.3 The new function IEEE_FMA performs fused multiply-add operations. 16
10.4 The function IEEE_INT performs rounded conversions to integer type. 16

10.5 The new functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG,

IEEE_MIN_NUM, and IEEE_MIN_NUM_MAG calculate maximum and minimum numeric

values. 16
10.6 The new functions IEEE_NEXT_DOWN and IEEE_NEXT_UP return the adjacent

machine numbers. ... 16
10.7 The new functions IEEE_QUIET_EQ, IEEE_QUIET_GE, IEEE_QUIET_GT,

IEEE_QUIET_LE, IEEE_QUIET_LT, and IEEE_QUIET_NE perform quiet comparisons. .. 16

J3/16-247

 5

10.8 The decimal rounding mode can be inquired and set independently of the binary

rounding mode, using the RADIX argument to IEEE_GET_ROUNDING_MODE and

IEEE_SET_ROUNDING_MODE. ... 16
10.9 The new function IEEE_REAL performs rounded conversions to real type. 16

10.10 The function IEEE_REM now requires its arguments to have the same radix. 16
10.11 The function IEEE_RINT now has a ROUND argument to perform specific

rounding. ... 16
10.12 The new function IEEE_SIGNBIT tests the sign bit of an IEEE number. 16
11 Features previously described by ISO/IEC TS 18508:2015 ... 16

11.1 The CRITICAL statement has optional ERRMSG= and STAT= specifiers. 17
11.2 The intrinsic subroutines ATOMIC_DEFINE and ATOMIC_REF have an optional

STAT argument. ... 17
11.3 The new intrinsic subroutines ATOMIC_ADD, ATOMIC_AND, ATOMIC_CAS,

ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND, ATOMIC_FETCH_OR,

ATOMIC_FETCH_XOR, ATOMIC_OR, and ATOMIC_XOR perform atomic operations. . 17

11.4 The new intrinsic functions FAILED_IMAGES and STOPPED_IMAGES return

indices of images known to have failed or stopped respectively. ... 17

11.5 The new intrinsic function IMAGE_STATUS returns the image execution status of

an image. The intrinsic subroutine MOVE_ALLOC has optional ERRMSG and STAT

arguments. ... 17

11.6 The intrinsic functions IMAGE_INDEX and NUM_IMAGES have additional forms

with a TEAM or TEAM_NUMBER argument. ... 17

11.7 The intrinsic function THIS_IMAGE has an optional TEAM argument. 17
11.8 The EVENT POST and EVENT WAIT statements, the intrinsic subroutine

EVENT_QUERY, and the type EVENT_TYPE provide an event facility for one-sided

segment ordering. .. 17

11.9 The CHANGE TEAM construct, derived type TEAM_TYPE, FORM TEAM and

SYNC TEAM statements, the intrinsic functions GET_TEAM and TEAM_NUMBER, and the

STAT= and TEAM= specifiers on image selectors, provide a team facility for a subset of the

program’s images to act in concert as if it were the set of all images. 17
11.10 The new intrinsic subroutines CO_BROADCAST, CO_MAX, CO_MIN,

CO_REDUCE, and CO_SUM perform collective reduction operations on the images of the

current team. ... 18

11.11 The concept of failed images, the FAIL IMAGE statement, and the named constant

STAT_FAILED_IMAGE provide support for fault-tolerant parallel execution. 18

J3/16-247

 6

1 Introduction
This document attempts to collect information about changes from Fortran 2008 to Fortran 2015,

including references to the standard and J3 documents. It is based on the list of changes from the

introduction to the draft standard 16-007r2.

Standing document 010 (currently 15-010r1) has much of this information in abbreviated form,

but misses some additional items and lacks explanatory detail.

2 Reference
In this specification, references to the standard if not otherwise specified are to Fortran 2015 and

draft document 16-007r2. Papers with N prefixes are WG5 papers.

3 Data Declaration

3.1 Constant properties of an object declared in its entity-decl can be
used in its initialization.

See 15-194

In F2008, a constant expression that depended on a constant property of another entity required

that the entity appear in a “prior specification”.

F2008 7.1.12p2

If a constant expression includes a specification inquiry that depends on a type parameter

or an array bound of an entity specified in the same specification-part , the type parameter

or array bound shall be specified in a prior specification of the specification-part . The

prior specification may be to the left of the specification inquiry in the same statement,

but shall not be within the same entity-decl .

F2015 allows the use of constant properties of the same entity-decl in an initialization:

F2015 10.1.12p2

…The prior specification may be to the left of the specification inquiry in the same

statement, but shall not be within the same entity-decl unless the specification inquiry

appears within an initialization.

J3/16-247

 7

4 Data Usage and Computation

4.1 The declared type of the value supplied for a polymorphic
allocatable component in a structure constructor is no longer
required to be the same as the declared type of the component.

See 16-233r1

F2008 4.5.10p6

If a component of a derived type is allocatable, the corresponding constructor expression

shall either be a reference to the intrinsic function NULL with no arguments, an allocatable

entity of the same rank, or shall evaluate to an entity of the same rank. If the expression is

a reference to the intrinsic function NULL, the corresponding component of the

constructor has a status of unallocated. If the expression is an allocatable entity, the

corresponding component of the constructor has the same allocation status as that

allocatable entity and, if it is allocated, the same dynamic type, bounds, and value; if a

length parameter of the component is deferred, its value is the same as the corresponding

parameter of the expression. Otherwise the corresponding component of the constructor

has an allocation status of allocated and has the same bounds and value as the expression.

F2015 7.5.10p6-8

If a component of a derived type is allocatable, the corresponding constructor expression

shall be a reference to the intrinsic function NULL with no arguments, an allocatable

entity of the same rank, or shall evaluate to an entity of the same rank. If the expression is

a reference to the intrinsic function NULL, the corresponding component of the

constructor has a status of unallocated.

If the component is allocatable and the expression is an allocatable entity, the

corresponding component of the constructor has the same allocation status as that

allocatable entity. If it is allocated, it has the same bounds; if a length parameter of the

component is deferred, its value is the same as the corresponding parameter of the

expression. If the component is polymorphic, it has the same dynamic type and value;

otherwise, it has the value converted, if necessary, to the declared type of the component.

If the component is allocatable and the expression is not an allocatable entity, the

component has an allocation status of allocated and the same bounds as the expression; if

a length parameter of the component is deferred, its value is the same as the

corresponding parameter of the expression. If the component is polymorphic, it has the

same dynamic type and value; otherwise, it has the value converted, if necessary, to the

declared type of the component.

4.2 Labeled DO loops have been redundant since Fortran 90 and are
now specified to be obsolescent.

13-320r2, B.3.10

J3/16-247

 8

4.3 The arithmetic IF statement has been deleted.

13-316r2, B.2

4.4 The EQUIVALENCE and COMMON statements and the block data
program unit have beenredundant since Fortran 90 and are now
specified to be obsolescent.

13-322r1, B.3.11

4.5 The nonblock DO construct has been deleted.

13-317r2, B.2

The nonblock forms of the do loop are deleted. This includes the shared termination forms of the

do loop.

4.6 FORALL is now specified to be obsolescent.

14-129r1, B.3.13

Both the construct and statement are obsolescent. I’m not sure if we have references in

documentation or error messages, but the standard terms starting with “forall-“ have been

replaced. For example, “forall-header” is now “concurrent-header”, but see the paper for details.

4.7 The type and kind of an implied DO variable in an array
constructor or DATA statement can be specified within the
constructor or statement.

14-101r1, 7.8 and 8.6.7

4.8 The locality of a variable used in a DO CONCURRENT construct
can be explicitly specified.

15-150r2, 11.1.7.2

4.9 The SELECT RANK construct provides structured access to the
elements of an assumed-rank array.

15-142r2, 11.10.10

5 Input/Output

5.1 The SIZE= specifier can be used with advancing input.

13-208r1, 134-218r1, 13-244r1

F2008 9.6.2.1

C923 (R913) If an EOR= or SIZE= specifier appears, an ADVANCE= specifier also shall

appear.

J3/16-247

 9

2 If an EOR= or SIZE= specifier appears, an ADVANCE= specifier with the value NO shall also

appear.

F2015 12.6.2.1

C1222 (R1213) If an EOR= specifier appears, an ADVANCE= specifier also shall appear.

2 If an EOR= specifier appears, an ADVANCE= specifier with the value NO shall also appear.

Give standards warning for F08 and earlier if SIZE= and not also ADVANCE=. Make sure RTL

can handle this combination. It counts only characters transferred in this specific input statement.

5.2 It is no longer prohibited to open a file on more than one unit.

16-120r3

Changes the behavior from non-standard to implementation-defined – just terminology.

5.3 The value assigned by the RECL= specifier in an INQUIRE
statement has been standardized.

13-330r1

F2008 9.10.2.26

If there is no connection, or if the connection is for stream access, the scalar-int-variable

becomes undefined.

F2015 12.10.2.26

If there is no connection, the scalar-int-variable is assigned the value −1, and if the connection is

for stream access the scalar-int-variable is assigned the value −2.

5.4 The values assigned by the POS= and SIZE= specifiers in an
INQUIRE statement for a unit that has pending asynchronous
operations have been standardized.

16-162r1, 12.10.2.22, 12.10.2.30

For both POS= and SIZE= in INQUIRE, the following text was added:

"If there are pending data transfer operations for the specified unit,

the value assigned is computed as if all the pending data transfers

had already completed."

5.5 The G0.d edit descriptor can be used for list items of type Integer,
Logical, and Character.

13-309r2

J3/16-247

 10

The G0.d edit descriptor shall be permitted to be used for list items of type Integer, Logical, or

Character. In all these cases, the .d value shall be ignored.

5.6 The D, E, EN, and ES edit descriptors can have a field width of
zero, analogous to the F edit descriptor.

13-351r2

New edit descriptor forms D0.d, E0.d, E0.dEe, EN0.d, EN0.dEe, ES0.d,

ES0.dEe.

5.7 The exponent width e in a data edit descriptor can be zero,
analogous to a field width of zero.

14-176r2

Permit the "e" in the "Ee" part of the E, EN, ES, and G edit descriptors to have the value zero.

E0 requests the exponent width to be minimal.

5.8 Floating-point formatted input accepts hexadecimal-significand
numbers that conform to ISO/IEC/IEEE 60559:2011.

14-198r1

Accept for numeric input values of the form 0x……

5.9 The EX edit descriptor provides hexadecimal-significand
formatted output conforming to ISO/IEC/IEEE 60559:2011.

14-198r1

New EX format edit descriptor

5.10 An error condition occurs if unacceptable characters are
presented for logical or numeric editing during execution of a
formatted input statement.

14-270, 14-175r3

If during formatted input a character input for numeric or logical editing is not acceptable to the

processor, an error condition occurs.

The standard didn’t previously specify that this was an error condition.

6 Execution Control

6.1 The stop code in a STOP or ERROR STOP statement can be
nonconstant.

15-192r2

J3/16-247

 11

In F2008 the stop code could be only a constant. In F2015 it can be any scalar integer or

character expression.

6.2 Output of the stop code and exception summary from the STOP
and ERROR STOP statements can be controlled.

15-192r2

Adds optional QUIET= specifier to STOP and ERROR STOP to suppress output of things such

as “FORTRAN STOP”.

7 Intrinsic Procedures and Modules

7.1 In references to the intrinsic functions ALL, ANY, FINDLOC, IALL,
IANY, IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2,
PARITY, PRODUCT, SUM, and THIS_IMAGE, the actual argument
for DIM can be a present optional dummy argument.

13-307r2

7.2 In a reference to the intrinsic function CMPLX with an actual
argument of type complex, no keyword is needed for a KIND
argument.

14-204, 16.9.45

Split the template for the intrinsic function CMPLX into two templates: one where the argument

X is of type complex, and a second where the argument X is of type real or integer or is a <boz-

literal-constant>. The template where the argument X is of type complex omits the dummy

argument Y.

As a consequence, the requirement that no actual argument shall correspond to Y if the argument

X is of type complex is not needed.

7.3 The new intrinsic function COSHAPE returns the coshape of a
coarray.

14-181r3, 16.9.55

7.4 The new intrinsic function OUT_OF_RANGE tests whether a
numeric value can be safely converted to a different type or kind.

14-183r2, 16.9.146

Add a new intrinsic function or functions which can check whether a REAL or INTEGER value

can be converted to a different type (or kind) without error,where "without error" means no

integer or real overflow will occur, or for the case where the value ia a NaN, that the target

type can represent NaN.

J3/16-247

 12

7.5 The new intrinsic subroutine RANDOM_INIT establishes the initial
state of the pseudorandom number generator used by
RANDOM_NUMBER.

14-184r4, 16.9.155

7.6 The new intrinsic function REDUCE performs user-specified array
reductions.

13-329r2, 16.9.161

7.7 A processor is required to report use of a nonstandard intrinsic
procedure, use of a nonstandard intrinsic module, and use of a
nonstandard procedure from a standard intrinsic module.

13-310r3

7.8 Integer and logical arguments to intrinsic procedures and
intrinsic module procedures that were previously required to be
of default kind no longer have that requirement, except for
RANDOM_SEED.

14-168r4

7.9 Specific names for intrinsic functions are now deemed
obsolescent.

13-319r1

7.10 All standard procedures in the intrinsic module ISO_C_BINDING,
other than C_F_POINTER, are now pure.

14-237r2

7.11 The arguments to the intrinsic function SIGN can be of different
kind.

15-202, 16.9.176

7.12 Nonpolymorphic pointer arguments to the intrinsic functions
EXTENDS_TYPE_OF and SAME_TYPE_AS need not have defined
pointer association status.

15-111r1

7.13 The effects of invoking the intrinsic procedures
COMMAND_ARGUMENT_COUNT, GET_COMMAND, and

J3/16-247

 13

GET_COMMAND_ARGUMENT, on images other than image one,
are no longer processor dependent.

15-204r1

7.14 Access to error messages from the intrinsic subroutines
GET_COMMAND, GET_COMMAND_ARGUMENT, and
GET_ENVIRONMENT_VARIABLE is provided by an optional
ERRMSG argument.

15-230r2

8 Program units and procedures:

8.1 The IMPORT statement can appear in a contained subprogram or
BLOCK construct, and can restrict access via host association;
diagnosis of violation of the IMPORT restrictions is required.

13-304r1, 15.4.3.4

(a) To be able to specify that an entity is host-associated.

(b) To be able to limit host association to a specific list of names; this shall include the empty set.

(c) To be able to prevent inadvertent "shadowing" of host names.

(d) No renaming.

8.2 The GENERIC statement can be used to declare generic
interfaces.

14-177r1, 13-209, 15.4.3.3

Allow a GENERIC statement as an alternative to an interface block, with syntax similar to its

use within a type definition.

8.3 The ERROR STOP statement can appear in a pure subprogram.

13-331, 11.4

8.4 The number of procedure arguments is used in generic
resolution.

13-332

8.5 In a module, the default accessibility of entities accessed from
another module can be controlled separately from the default
accessibility of entities declared in the using module.

13-327r3

J3/16-247

 14

8.6 An IMPLICIT NONE statement can require explicit declaration of
the EXTERNAL attribute throughout a scoping unit and its
contained scoping units.

13-312r4, 8.7

8.7 A defined operation need not specify INTENT (IN) for a dummy
argument with the VALUE attribute.

14-178r1

8.8 A defined assignment need not specify INTENT (IN) for the
second dummy argument if it has the VALUE attribute.

14-178r1

8.9 Procedures, including elemental procedures, can be invoked
recursively by default; the RECURSIVE keyword is advisory only.

14-179r2

8.10 The NON_RECURSIVE keyword specifies that a procedure is not
recursive.

14-179r2

8.11 A dummy argument of a pure function is permitted in a variable
definition context, if it has the VALUE attribute.

14-237r2

9 Features previously described by ISO/IEC TS 29113:2012
All in N1942.

J3/16-247

 15

9.1 A dummy data object can assume its rank from its effective
argument.

9.2 A dummy data object can assume the type from its effective
argument, without having the ability to perform type selection.

9.3 An interoperable procedure can have dummy arguments that are
assumed-type and/or assumed-rank.

9.4 An interoperable procedure can have dummy data objects that
are allocatable, assumed-shape, optional, or pointers.

9.5 The character length of a dummy data object of an interoperable
procedure can be assumed.

9.6 The argument to C_LOC can be a noninteroperable array.

9.7 The FPTR argument to C_F_POINTER can be a noninteroperable
array pointer.

9.8 The argument to C_FUNLOC can be a noninteroperable
procedure. The FPTR argument to C_F_PROCPOINTER can be a
noninteroperable procedure pointer.

10 Changes to the intrinsic modules IEEE_ARITHMETIC,
IEEE_EXCEPTIONS, and IEEE_FEATURES for
conformance with ISO/IEC/IEEE 60559:2011:

All in 13-356, 14-196r1, 14-198r1

10.1 There is a new, optional, rounding mode IEEE_AWAY. The new
type IEEE_MODES_TYPE encapsulates all floating-point modes.
Features associated with subnormal numbers can be accessed

J3/16-247

 16

with functions and types named . . .SUBNORMAL.. . (the old . .
.DENORMAL.. . names remain).

10.2 The standard intrinsic relational operations on IEEE numbers
provide the compareSignaling{relation} operations.

10.3 The new function IEEE_FMA performs fused multiply-add
operations.

10.4 The function IEEE_INT performs rounded conversions to integer
type.

10.5 The new functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG,
IEEE_MIN_NUM, and IEEE_MIN_NUM_MAG calculate maximum
and minimum numeric values.

10.6 The new functions IEEE_NEXT_DOWN and IEEE_NEXT_UP return
the adjacent machine numbers.

10.7 The new functions IEEE_QUIET_EQ, IEEE_QUIET_GE,
IEEE_QUIET_GT, IEEE_QUIET_LE, IEEE_QUIET_LT, and
IEEE_QUIET_NE perform quiet comparisons.

10.8 The decimal rounding mode can be inquired and set
independently of the binary rounding mode, using the RADIX
argument to IEEE_GET_ROUNDING_MODE and
IEEE_SET_ROUNDING_MODE.

10.9 The new function IEEE_REAL performs rounded conversions to
real type.

10.10 The function IEEE_REM now requires its arguments to have the
same radix.

10.11 The function IEEE_RINT now has a ROUND argument to perform
specific rounding.

10.12 The new function IEEE_SIGNBIT tests the sign bit of an IEEE
number.

11 Features previously described by ISO/IEC TS 18508:2015
All in N2074

J3/16-247

 17

11.1 The CRITICAL statement has optional ERRMSG= and STAT=
specifiers.

11.2 The intrinsic subroutines ATOMIC_DEFINE and ATOMIC_REF
have an optional STAT argument.

11.3 The new intrinsic subroutines ATOMIC_ADD, ATOMIC_AND,
ATOMIC_CAS, ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND,
ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR, ATOMIC_OR, and
ATOMIC_XOR perform atomic operations.

11.4 The new intrinsic functions FAILED_IMAGES and
STOPPED_IMAGES return indices of images known to have failed
or stopped respectively.

11.5 The new intrinsic function IMAGE_STATUS returns the image
execution status of an image. The intrinsic subroutine
MOVE_ALLOC has optional ERRMSG and STAT arguments.

11.6 The intrinsic functions IMAGE_INDEX and NUM_IMAGES have
additional forms with a TEAM or TEAM_NUMBER argument.

11.7 The intrinsic function THIS_IMAGE has an optional TEAM
argument.

11.8 The EVENT POST and EVENT WAIT statements, the intrinsic
subroutine EVENT_QUERY, and the type EVENT_TYPE provide
an event facility for one-sided segment ordering.

11.9 The CHANGE TEAM construct, derived type TEAM_TYPE, FORM
TEAM and SYNC TEAM statements, the intrinsic functions
GET_TEAM and TEAM_NUMBER, and the STAT= and TEAM=
specifiers on image selectors, provide a team facility for a subset

J3/16-247

 18

of the program’s images to act in concert as if it were the set of
all images.

11.10 The new intrinsic subroutines CO_BROADCAST, CO_MAX,
CO_MIN, CO_REDUCE, and CO_SUM perform collective reduction
operations on the images of the current team.

11.11 The concept of failed images, the FAIL IMAGE statement, and
the named constant STAT_FAILED_IMAGE provide support for
fault-tolerant parallel execution.

