To: J3 J3/00-140

From: JOR page 1 of 2

Date: March 1, 2000

Subject: Async/Volatile fixups

This paper addresses various problems with the ASYNCHRONOUS and VOLATILE

attributes, mostly from paper 00-129.

Malcolm asked why we require an explicit interface for objects with these

attributes which are dummy arguments. This restriction was added so the

compiler could use pass by descriptor, and avoid copyin/copyout. Using

copyin/copyout would almost certainly cause unexpected behavior/wrong answers

in this context. Malcolm also pointed out a few omissions in how these

attributes are handled.

JOR has decided to adopt Malcolm's suggestion for cleaning up what types of

dummy arguments can have the ASYNC attribute, and to apply the same mechanisms

to VOLATILE dummys.

Simply, an actual argument that is (easily) known to be contiguous can always be

an actual argument corresponding to a dummy argument with the ASYNC or VOLATILE

attribute. Possibly non-contiguous objects (but regularly shaped) can be passed

if the dummy argument is assumed shape. This forces the actual & dummy to be

the same rank/shape.

Although the standard does not prohibit using copyin/copyout under these

restrictions, we know of no implementations that do the copies. A suitable

hint for implementors is included in the edits to ensure that copyin/copyout

is not used for dummy arguments with these attributes.

One remaining question was whether or not to require an explicit interface for

these dummy arguments all the time. An explicit interface would allow the

compiler to check for cases where a compiler has to use copyin/copyout

(such as passing a POINTER to a routine with an implicit interface is one

common example), and issue an error. For now, we have decided to leave this

restriction in place, and add a few suitable constraints so the compiler can

prevent the users from shooting themselves in the foot too often. If we choose

not to require the explicit interface for all routines which contain a dummy

argument with one of these attributes, then the constraints will become plain

normative text (not a constraint).

Paper 00-132 contains edits to prohibit vector valued subscripted arrays from

being passed to a dummy argument with these attributes, since copyin/copyout

is always required in this case.

Malcolm asked if a called procedure was expected to implicitly WAIT if any

dummy args were ASYNCHRONOUS. The answer is NO.

Subgroup decided to not require a dummy arg to have the ASYNC attribute

just because the actual argument does. The general rule (big hammer) is

already present 5.1.2.12 [77:29-?], and removing the restriction allows more

flexibility for knowledgable users. Volatile has the same sort of requirements

as async after this change. This change also allows intrinsics to be called

with objects having the ASYNC attribute, as long as the object is not

currently a pending I/O storage sequence affector.

J3/00-140

page 2 of 2

Malcolm asked if we really wanted to require the base object of a part-ref to be

ASYNCHRONOUS just because a part-ref was. We do, and also for all the part-ref's to also be asynchronous, to enable a more efficient compiler implementation.

EDITS to J3/00-007:

 Section 5.1.2.12 [77:35]

 change "ASYNCRONOUS" to "ASYNCHRONOUS"

 Section 5.1.2.12 [77:37-38]: delete these two lines.

 Section 12.2.1.1 [244:16], change

 ", and"

 to

 ", whether it has the ASYNCHRONOUS attribute (5.1.2.12), whether it has

 the VOLATILE attribute (5.1.2.13), and"

 Section 12.4.1.2 [260:15+] (after not 12.26), add

 The following additional constraints apply to the syntax rule defining

 actual arguments (R1219).

 Constraint: If an actual argument is an array section or an assumed-shape

 array, and the corresponding dummy argument has either the VOLATILE or

 ASYNCHRONOUS attributes, that dummy argument shall be an assumed-shape

 array.

 Constraint: If an actual argument is a pointer array, and the corresponding

 dummy argument has either the VOLATILE or ASYNCHRONOUS attributes, that

 dummy argument shall be an assumed-shape array or a pointer array.

 Constraint: If an actual argument is a <data-ref> with non-zero rank, and

 the rightmost <part-ref> has zero rank, and the corresponding dummy

 argument has the VOLATILE or ASYNCHRONOUS attribute, that dummy argument

 shall be an assumed-shape array.

 Note

 These last few restrictions on actual arguments that correspond to a

 dummy argument with either the ASYNCHRONOUS or VOLATILE attribute are

 designed to avoid forcing a processor to use the so-called copyin/copyout

 argument passing mechanism. Making a copy of actual arguments whose values

 are likely to change due to an asynchronous I/O operation completing or in

 some non-predictable manner will cause the new values to be inaccessible

 via the dummy argument, and may cause those new values to be lost when a

 called procedure returns and "copyout" overwrites the actual argument.

 END NOTE

