
6 May 2000 Page 1 of 4 J3/00-180

Subject: Define “component order” term, issues 17-19 and 211, more work on constructors
From: Van Snyder
References: 00-148, 00-152

1 Introduction

In paper 00-148, Malcolm addressed issues 17-19 and 211. In paper 00-152, I addressed the
definition of the “component order” term. This paper combines those two papers.
Concerning issues 17-19 and 211, Malcolm wrote in paper 00-148:

Issue 17 says

“... I’m bothered by having a component name that isn’t the name of
a component. Perhaps we should use a different terminology such as
subobject name”

I concur.

Issue 18 says

“Should the above not be a constraint? Fix up Grandparents.”

The answer to the question is “No,” but it ought to be part of our scoping rules
(which do have similar status as constraints in requiring violation to be diagnosed).

I concur with the second commandment.

Issue 19 says

“but the name ... is not a component”

ok, ok already

Issue 211 says

“ ‘flattened form’ is used ... but ... nowhere defined”

I concur.

Paper 00-148 introduced the term “subobject name.” This paper instead expands on the
definition of “subobject”, which is defined only superficially at [16:23-28]. The term “subobject
name” then follows from the term “subobject.”
Section 4.5.6 Construction of derived-type values doesn’t work for extended types. Section
4.5.3.1 Inheritance defines the order of components of an extended type, for purposes of
derived-type value construction and intrinsic input/output, but doesn’t define the term.
This paper defines the term “subobject order” for nonextensible, base and extended types, and
uses the term for value construction and intrinsic input/output.

2 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +

year/00/00-148.pdf.gz
year/00/00-152.pdf.gz
year/00/00-148.pdf.gz
year/00/00-152.pdf.gz
year/00/00-148.pdf.gz
year/00/00-148.pdf.gz

6 May 2000 Page 2 of 4 J3/00-180

indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

Ultimately, a nonextensible or base derived type is resolved into ultimate components that 41:21-22
are either of intrinsic type or have the ALLOCATABLE or POINTER attribute. An extended
type may be resolved into ultimate subobjects (4.5.3.1) if subobjects of the parent subobject
are to be included, or ultimate components if subobjects of the parent subobject are not to be
included.
[Editor: Delete “For purposes...” to the end of the paragraph.] 53:15-18

[Define a term for the parent subobject.] 53:22-24
An extended type has a parent subobject with the type and type parameters of the parent
type, consisting of all of the subobjects inherited from the parent type. The name of the parent
subobject is the parent type name.

[Editor: Delete issue 17. We no longer call the name of the parent subobject the “component 53:25-34
name.”]

[Editor: Replace “subobject denoted by the parent type name” with “parent subobject name”. 53:35
(Improve readability by using the newly coined term.)]

[Editor: Insert a new paragraph. Add this instance of “subobject” to the index.] 53:37+
The subobjects of a nonextensible type or of a base type are its components. The subobjects
of an extended type are the parent subobject, subobjects of the parent subobject, and the
additional components declared, if any.
The ultimate subobjects of a nonextensible type or of a base type are its ultimate compo-
nents. The ultimate subobjects of an extended type are the ultimate subobjects of the parent
subobject, and the ultimate subobjects of additional components declared, if any.
This extends the definition of the term “subobject” and thereby defines the term “subobject
name.” We use “subobject” instead of “component” when we want to include parent subob-
ject(s). Note that it is defined recursively so that “grandparent” subobjects are included.

Note to J3

[Editor: Replace “have neither” with “not have”. Replace “accessible component” with “acces- 53:38-40
sible subobject”. Delete “nor ... type”. Make the whole thing a note. (Use our new terminology;
make it a note because it will be covered by the scoping rules in section 14.)]

[Editor: Delete issue 18.] 53:41-43

4.5.31
2 Subobject order 55:0+

[Editor: Insert “subobject order” into the index.]
The subobject order of the subobjects of a derived type is the subobject order of the parent
subobject, if the type is an extended type and the parent type has subobjects, followed by the
order of the declarations of components declared in the derived type definition.
The subobject order of the ultimate subobjects of a derived type is the order of the ultimate
subobjects of the parent subobject, if the type is an extended type and the parent type has
subobjects, followed by the order of the declarations of components that are of intrinsic type,
and the ultimate subobjects that result from declarations of components of the derived type,
taken in the order the declarations appear in the derived type definition.

The structure constructor for any derived type may be in flattened form, in which values may 55:29+
be provided for subobjects inherited from the parent type, if any. The structure constructor for
an extended type may be in nested form, which allows providing a single value for the parent

6 May 2000 Page 3 of 4 J3/00-180

subobject.

Constraint: The type name and all subobjects of the type shall be accessible in the scoping 55:32-56:4
unit containing the structure constructor.

Constraint: In the flattened form, there shall be at most one component-spec corresponding
to each subobject of the type other than the parent subobject and no component-
spec corresponding to the parent subobject. In the nested form, there shall be at
most one component-spec corresponding to the parent subobject, and at most one
component-spec corresponding to each component declared for the extended type.

Constraint: In the flattened form, there shall be exactly one component-spec corresponding to
each subobject of the type, other than the parent subobject, that does not have
default initialization. In the nested form, there shall be exactly one component-spec
corresponding to the parent subobject of the type, and exactly one component-spec
corresponding to each component declared for the extended type that does not
have default initialization.

Constraint: The keyword = may be omitted from a component-spec only if the keyword = has
been omitted from each preceeding component-spec in the constructor.

Constraint: In the flattened form, each keyword shall be the name of a subobject of the type.
In the nested form, each keyword shall be the name of a component declared for
the extended type, or the name of the parent subobject.

If the first component-spec has no keyword and the type of the expr is the same as the parent
type, or if there is a component-spec with a keyword that is the same as the parent subobject
name, the constructor is in nested form. Otherwise, the constructor is in flattened form.
In the nested form, in the absence of a component name keyword, the first expr is assigned
to the parent subobject, the second expr is assigned to the first component declared in the
derived type definition, and each subsequent expr is assigned to the sequentially corresponding
component declared in the derived type definition.
In the flattened form, in the absence of a component name keyword, each expr is assigned to
the corresponding subobject of the type, with the subobjects taken in subobject order (4.5.31

2).
If the keyword is the same as the parent subobject name, the expr is assigned to the parent
subobject; otherwise the expr is assigned to the subobject named by the keyword.

[Note to Editor: This includes deleting issues 19 and 211.] 56:7-20
The value that corresponds to the parent subobject is assigned to the parent subobject using
intrinsic assignment.
For nonpointer components, the corresponding value is assigned to the corresponding subobject
using intrinsic assignment (7.5.1.4).

The previous semantics were “converted according to the rules of intrinsic assignment to a
value that has the same type and type parameters as the corresponding component. The
shape of the expression shall correspond to the shape of the component.” Since this didn’t
say it did intrinsic assignment, there’s some question how it handles pointer and allocatable
components of a derived type component value. The revision clarifies this, and also allows a
scalar expr to be assigned to an array component.

Note to J3

For pointer components, the corresponding expr shall evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement (7.5.2), and it is assigned
to the component using pointer assignment.

6 May 2000 Page 4 of 4 J3/00-180

[Editor: Delete.] 57:1-3

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 87:41
the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 89:3
the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject”. (This now includes subobjects inherited from 91:10
the parent type in the case of objects of extended type.)]

[Editor: Replace “name of a component” with “subobject name”. (Make parent subobjects 96:37
usable).]

[Editor: Replace “components” with “subobjects”. (This now includes subobjects inherited 103:44
from the parent type in the case of objects of extended type.)]

[Editor: Replace “component ultimately in the object” with “ultimate subobject”. (This now 183:29-30
includes subobjects inherited from the parent type in the case of objects of extended type.)]

[Editor: Replace “component” with “subobject” twice. (This now includes subobjects inherited 183:34
from the parent type in the case of objects of extended type.)]

[Editor: Replace “in the same ... unless” by “in the subobject order (4.5.31
2) of the ultimate 183:38-39

subobjects unless.”

[Editor: Replace “components ... comprise” by “effective items (9.5.2) that result from expand- 188:44
ing”.]

[Editor: Replace “components, and binding names” with “bindings, and named subobjects”. 342:5
(Move scoping requirements from section 4 to section 14).]

ultimate subobject (4.5.3): For a derived type or a structure, a subobject that is of intrinsic 407:22+
type, has the ALLOCATABLE attribute, or has the POINTER attribute, or an ultimate sub-
object of a subobject that is of derived type and does not have the ALLOCATABLE attribute
or the POINTER attribute.
[Editor: Insert a new paragraph:] 416:24+
A subobject of a nonextensible type or of a base type is the same as a component. A subobject
of an extended type is the parent subobject, a subobject of the parent type, or a component of
the extended type. The distinction between an ultimate component and an ultimate subobject
is that an ultimate subobject might arise from the parent subobject, whereas an ultimate
component cannot. Consider the following example:

TYPE, EXTENSIBLE :: POINT
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: PERSON_POINT
TYPE(PERSON) :: WHO

END TYPE COLOR_POINT

The only component of PERSON POINT is WHO. The subobjects of PERSON POINT are X, Y, POINT
and WHO. The ultimate subobjects of PERSON POINT are X, Y, NAME and AGE.

