
J3/00-266 1/4

To: J3
From: Larry Meadows
Subject: Unresolved issue 255

References: J3/97-153, J3/00-139

In the context of /interop discussions at the WG5 meeting in Oulu, unresolved
issue 255 came up.

This paper proposes to resolve issue 255 via a revision of the command-line
argument feature. The Revision is based on paper 00-139 that in turn was based
upon 97-153. 97-153 discusses the rationale in detail.

At the time, one of the arguments against 97-153 was that it provided no simple
way to retrieve arbitrarily long command-line arguments; independent changes
have provided a clean resolution: Allocatable character lengths are now allowed
and provide a simple means of addressing this issue.

The approach of the current f2k draft has several shortcomings:

1. It cannot be done anywhere except in the main program, thus forcing
architectural decisions on the user. This is particularly problematic if the
main program is not in Fortran or is otherwise not modifiable by the user who
needs the command-line access. In addition this limitation is inconsistent
with interoperability with C (that is, Fortran/C programs may well have a
need to access the command line in places other than the main program, when
coded in the most natural fashion).

2. It is not user-implementable, but can only be done by the compiler (largely a
consequence of point 1). This means that users cannot do this with existing
compilers.

3. It defines new language syntax and features, which invariably means new
issues to get right. We probably haven't found all of them yet.

4. If extremely long command-line arguments are employed, the facility as
currently defined is likely to be inefficient way to deal with them, as it
forces all the command-line arguments to be returned in a single array. Thus
if there is one argument of length 10,000 characters, and 1000 arguments of
length 3 characters, you'll need a 10 megabyte array, about 1000 times larger
than the actual data.

5. The approach of 97-153 is more flexible in that the user can declare the
necessary variables in a way that fits the application. For example, they
could be derived type components or the size could be allocated with extra
room to accommodate requirements such as null termination (as mentioned in
paper 00-121). With the current approach, these kinds of requirements require
copying the data from the "pseudo dummy argument" to its preferred
destination.

6. It is not at all similar to predominant existing Fortran practice.

It seems likely that the above shortcomings would cause a substantial fraction
of users to continue to demand a procedure-based approach in addition to the
approach of the standard.

Edits relative to 00-007:

J3/00-266 2/4

{Delete program args from the bnf}

[235:14] Delete "[(<program-arg-list>)]

[235:15] Delete

[235:24-25] Delete

{Delete section 11.1.1}

[236:1-40] Delete

{Delete special case for char*(*)}

[68:25-26] Delete

{Delete special case for assumed shape}

[73:42-43] Delete "or...processor"

{These edits put the procedures in the ISO_FORTRAN_ENV module. It
 is also acceptable to make them intrinsic procedures in 13.16.
 The changes for such placement are trivial}.

[339:33] Insert after "."
 "It also provides procedures to access command arguments."

[340:22+] Insert new section

 13.17.3 Command arguments

 The module shall provide the following procedures for accessing
 command arguments.

 The meaning, interpretation, and means of providing command
 arguments are processor dependent.

 13.17.3.1 COMMAND_ARGUMENT_COUNT()

 Description. Returns the number of command arguments.

 Class. Pure function.

 Arguments. None.

 Result Characteristics. Scalar default integer.

 Result Value. The result value is equal to the number
 of command arguments available. If there are no
 command arguments available or if the processor does not
 support command arguments, then the result value is 0.

 If the processor has a concept of a command name, the
 command name does not count as one of the command arguments.

 13.17.3.2 GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])

J3/00-266 3/4

 Description. Returns a command argument.

 Class. Pure subroutine.

 Arguments.

 NUMBER shall be scalar and of type default integer.
 It is an INTENT(IN) argument.

 It specifies the number of the command argument that
 the other arguments give information about. Useful
 values of NUMBER are those between 0 and the argument
 count returned by the COMMAND_ARGUMENT_COUNT
 intrinsic. Other values are allowed, but will
 result in error status return (see below).

 Command argument 0 is defined to be the command
 name by which the program was invoked if the
 processor has such a concept. It is allowed
 to call the GET_COMMAND_ARGUMENT procedure for
 command argument number 0, even if the processor
 does not define command names or other command
 arguments.

 The remaining command arguments are numbered
 consecutively from 1 to the argument count in an
 order determined by the processor.

 VALUE(optional) shall be scalar and of type default character.
 It is an INTENT(OUT) argument. It is assigned the
 value of the command argument specified by NUMBER.
 If the command argument value cannot be
 determined, VALUE is assigned all blanks.

 LENGTH(optional) shall be scalar and of type default integer.
 It is an INTENT(OUT) argument. It is assigned the
 significant length of the command argument
 specified by NUMBER. The significant length may
 including trailing blanks if the processor allows
 command arguments with significant trailing blanks.
 This length does not consider any possible
 truncation or padding in assigning the command
 argument value to the VALUE argument; in fact the
 VALUE argument need not even be present. If the
 command argument length cannot be determined, a
 length of 0 is assigned.

 STATUS(optional) shall be scalar and of type default integer.
 It is an INTENT(OUT) argument. It is assigned the
 value 0 if the argument retrieval is successful.
 It is assigned a processor-dependent non-zero
 value if the argument retrieval fails.

 One possible reason for failure is that NUMBER is
 negative or greater than COMMAND_ARGUMENT_COUNT().

J3/00-266 4/4

 Example.

 Program echo
 use iso_fortran_env
 integer :: i
 character :: command*32, arg*128

 call get_command_argument(0, command)
 write (*,*) "Program name is: ", command

 do i = 1 , command_argument_count()
 call get_command_argument(i, arg)
 write (*,*) "Argument ", i, " is ", arg
 end do
 end program echo

 13.17.3.3 GET_COMMAND([COMMAND, LENGTH])

 Description. Returns the entire command by which the program
 was invoked.

 Class. Pure subroutine.

 Arguments.

 COMMAND(optional) shall be scalar and of type default character.
 It is an INTENT(OUT) argument. It is assigned the
 entire command by which the program was invoked.
 If the command cannot be determined, COMMAND is assigned
 all blanks.

 LENGTH(optional) shall be scalar and of type default integer.
 It is an INTENT(OUT) argument. It is assigned the
 significant length of the command by which the
 program was invoked. The significant length may
 including trailing blanks if the processor allows
 commands with significant trailing blanks. This
 length does not consider any possible truncation or
 padding in assigning the command to the COMMAND
 argument; in fact the COMMAND argument need not
 even be present. If the command length cannot be
 determined, a length of 0 is assigned.

