
J3/01-178r1

Page 1 of 2

To: J3

Date: 21st March 2001

Subject: Type parameter names and object names

From: Malcolm Cohen

1. Problems with object-name
Our default syntax rule "xyz-name is name" has resulted in some very misleading BNF usage.

In particular, there is no definition of object-name, but it is generally understood to mean the name of a data
object. This is not true - it can be the name of anything. For example,

R602 designator is object-name

(no constraint) and

R601 variable is designator

Constraint: designator shall not be a constant or a subobject of a constant.

seem to imply that (e.g.) a module procedure name is a variable, even outside of the module procedure, since it can
be produced by the syntax and is not constrained against. This is silly.

We should provide an explicit rule which defines object-name and constrain it to be the name of a data object.

2. Other designator problems
The definition of structure-component omits to specify that the leftmost part-name be the name of a data object,
though since the standard goes off the rails a few lines later (when describing the semantics) if it is not, one might
reasonably guess that this should be the case.

3. Problems with type parameter names
Type parameters are not data objects, nor do I think we wish them to be. But we do wish them to be allowed in
expressions inside of the derived-type definition. Currently, they are allowed only because of the excessive
looseness of the BNF "object-name"; once that is fixed, we need to have specific BNF to permit them in an
expression.

Taking this approach, we would not allow "%kind" to be used to discover the kind of a type parameter (because
"%kind" can only be applied to objects). The user can use the KIND intrinsic (if available) or simply repeat the
expression by which he specified the kind of the type parameter.

3. Problems with procedure pointers
Procedure pointers can have their INTENT and OPTIONAL attributes specified either in the PROCEDURE
statement or in the INTENT and OPTIONAL statements. However, due to wording deficiencies, they cannot have
their SAVE and POINTER attributes specified in SAVE and POINTER statements. We should fix this
inconsistency.

This would not be necessary if we considered procedure pointers to be data objects. Oh well.

The descriptions of how procedure pointers are called and passed as arguments also seem not to be bulletproof.

3. Edits to 01-107
[64:10] Change "entity-decl" to "entity-decl".

{Italicise BNF term reference.}

J3/01-178r1

Page 2 of 2

[64:11+] Insert "R505a object-name is name

Constraint: object-name shall be the name of a data object."

{Make sure that object designators always refer to objects.}

[79:16+] Insert J3 note:

"Unresolved issue:

We ought to allow procedure pointers to be saved by a SAVE statement as well as by the SAVE attribute
on the PROCEDURE statement. Similarly we ought to allow their pointerness to be specified on the POINTER
statement."

[81:24,26] Change "object" to "entity" twice.

{Fix non-sequitur: [81:30] expects this BNF to provide entities, not objects.}

[94:42+] Insert

"Constraint: The leftmost part-name shall be the name of a data object."

{Only allow component selection on data objects, not statement functions etc.}

[108:7+] Insert "or type-param-name

Constraint: type-param-name shall be the name of a type parameter."

{Allow type parameters to appear as primaries in an expression. The scoping rules ensure that it is an accessible
type parameter, i.e. that we are inside a relevant type definition.}

[253:9+] Insert J3 note:

"Unresolved issue:

The usage of variable in R1216, R1217 and R1220 w.r.t. procedure pointers is downright misleading if
not totally incorrect. This ought to be fixed and simplified."

