10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

13 May 2002 J3/02-178r2

Subject: Unresolved issue 362
From: John Reid, as revised by Van Snyder

1 Introduction

Subgroup suggests one change to 02-178, shown below on page 2. For the convenience of
members, we also show how the TEXisms in 02-178 will be rendered.

2 Original text of 02-178, with modification indicated

I would like to acknowledge the help of Malcolm Cohen, Richard Maine,
Dick Hendrickson, and Dan Nagle in constructing this paper.

Unresolved issue 362 is

The comments apply to the IEEE SUPPORT * functions, and possibly
others.

There are several problems here

A) IEEE_SUPPORT_DENORMAL can’t be a generic function since the rules
do not allow an optional argument to be the generic decider. Do we
need to have 2 cases in the header IEEE_SUPPORT_DENORMAL() and
IEEE_SUPPORT_DENORMAL(X)? Does that match the intent?

B) How should the restriction be read? It’s clear that
IEEE_SUPPORT_DENORMAL(3.14) can’t be invoked unless
TEEE_SUPPORT_DATATYPE(3.14) is true; but can IEEE_SUPPORT_DENORMAL()
be invoked if IEEE_SUPPORT_DATATYPE() is false? The restriction
could be read either way. What was the intent?

C) How should this be treated if X is an optional argument in the
invoker?
Call z ()

Subroutine z(X)
Real, optional :: X
Print *, IEEE_SUPPORT_DENORMAL (X)

Is this illegal because it’s a reference to a not-present optional
argument? Is it the same as Print *, IEEE SUPPORT DENORMAL(3.14)
because only the properties of X apply? Is it the same as Print x,
IEEE SUPPORT DENORMAL() because the argument isn’t present and
unpresentness flows down the call chain?

I think the answer to A) should be yes. The sensible interpretation of
the code C) is that the inquiry is about a compile-time property of X

13 May 2002 Page 1 of 4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

13 May 2002 J3/02-178r2

that is independent of its presence. I do not think anyone foresaw this
difficulty when we were writing the TR. Furthermore (see 02-161rl),
similar considerations apply to several existing inquiry functioms,
such as KIND. Malcolm Cohen has suggested edits to pp. 270-271 to

cover the general case (see below). To make this cover the IEEE
inquiries, we need to to allow an IEEE inquiry function to be an
initialization expression, a derirable change anyway. A simple way to
do this is to extend the definition of specification inquiry so that
7.1.7 (8) applies to IEEE inquiry functions.

B) highlights an ambiguity that needs resolution anyway. It would be
more friendly to the user to allow the case where IEEE_SUPPORT_DATATYPE
is false and return false in this case. This is just a minor extension
from what is in the TR.

Edits — 02-007r1

127:41. Set ’specification inquiry’ in bold and add an index reference
to it.

128:5. Delete ’or’
128:6. Change ’.’ to ’, or’
128:6+. Add
(7) an IEEE inquiry function (14.8.1).

Begin Revised Edit

270:32. After ’PRESENT intrinsic function’ add ’or as an argument of a
function reference that meets the requirements of (7) or (8) in
7.1.7°.

End of Revised Edit

270:38-40. Change

If it is a pointer, it shall not be allocated, deallocated,
nullified, pointer-assigned, or supplied as an actual argument
corresponding to a nonpointer dummy argument other than as the
argument of the PRESENT intrinsic function.

to
If it is a pointer, it shall not be allocated, deallocated,
nullified, pointer-assigned, or supplied as an actual argument
corresponding to an optional nonpointer dummy argument.

This change simply factors OUT the cases already covered by the ordinary

one (lines 31-32).

270:41-42. Change
If it is allocatable, it shall not be allocated, deallocated, or
supplied as an actual argument corresponding to a nonallocatable

13 May 2002 Page 2 of 4

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

w

5

36

37

38

39

40

41

42

43

44

B

6

47

13 May 2002 J3/02-178r2

dummy argument other than as the argument of the PRESENT intrinsic
function.

to
If it is allocatable, it shall not be allocated, deallocated, or
supplied as an actual argument corresponding to an optional
nonallocatable dummy argument.

271:1. Change
If it has type parameters, they shall not be inquired about.
to
If it has nonkind type parameters, they shall not be the
subject of an inquiry.

371:23. Change the title to
IEEE_SUPPORT_DATATYPE() or IEEE_SUPPORT_DATATYPE(X)

Elsewhere. Make a similar change on each of the lines 372:1, 373:1,
373:14, 374:11, 374:23, 374:37, 375:12, 375:27, 376:4.

371:26. Delete ’(optional)’.

Elsewhere. Make the same change on each of the lines 372:4, 373:5,
373:19, 374:14, 374:27, 375:3, 375:17, 375:31, 376:8.

372:5-6. Delete these lines and the J3 internal note.

Elsewhere. Delete the lines 373:6-7, 373:20-21, 374:15-16, 374:28-29,
375:4-5, 375:18-19, 375:32-33.

372:8-11. Replace by
\resvalue{}

\begin{incase}
\item IEEE_SUPPORT_DENORMAL(X) has the value true if
IEEE_SUPPORT_DATATYPE(X) has the value true and the processor
supports arithmetic operations and assignments with denormalized
numbers (biased exponent $e = 0$ and fraction $f \neq 0$, see section
3.2 of the IEEE standard) for real variables of the same kind type
parameter as X; otherwise, it has the value false.

\item IEEE_SUPPORT_DENORMAL() has the value true if and only if

IEEE_SUPPORT_DENORMAL(X) has the value true for all real X.
\end{incase}

This is how the above TgXism compiles:
Result Value.

13 May 2002 Page 3 of 4

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

N

8

29

31

32

33

34

35

36

37

39

13 May 2002 J3/02-178r2

Case (i): IEEE_SUPPORT DENORMAL(X) has the value true if IEEE_SUP-
PORT DATATYPE(X) has the value true and the processor supports
arithmetic operations and assignments with denormalized numbers (biased
exponent e = 0 and fraction f # 0, see section 3.2 of the IEEE standard)
for real variables of the same kind type parameter as X; otherwise, it has
the value false.

Case (ii): IEEE_SUPPORT_DENORMAL() has the value true if and only if
IEEE_SUPPORT_DENORMAL(X) has the value true for all real X.

Elsewhere. Make similar changes to lines 373:9-11, 373:23-25,
374:18-20, 374:31-34, 375:7-9, 375:21-24, 375:35-376:1.

376:11-24. Change to
\begin{incase}

\item IEEE_SUPPORT_STANDARD(X) has the value true if the results
of all the functions IEEE_SUPPORT_DATATYPE(X),
IEEE_SUPPORT_DENORMAL(X), IEEE_SUPPORT_DIVIDE(X),
IEEE_SUPPORT_FLAG(FLAG,X) for valid FLAG,
IEEE_SUPPORT_HALTING(FLAG) for valid FLAG, IEEE_SUPPORT_INF(X),
IEEE_SUPPORT_NAN(X), IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) for
valid ROUND_VALUE, and IEEE_SUPPORT_SQRT(X) are all true;
otherwise, the result has the value false.

\item IEEE_SUPPORT_STANDARD() has the value true if and only if
IEEE_SUPPORT_STANDARD(X) has the value true for all real X.
\end{incase}

This is how the above TgXism compiles:
Result Value.

Case (i): IEEE_SUPPORT_STANDARD(X) has the value true if the results
of all the functions IEEE_ SUPPORT DATATYPE(X), IEEE_SUP-
PORT_DENORMAL(X), IEEESUPPORT_DIVIDE(X), IEEE_SUP-
PORT FLAG(FLAG,X) for valid FLAG, IEEE SUPPORT_HALT-
ING(FLAG) for valid FLAG, IEEE_SUPPORT_INF(X), IEEE_SUP-
PORT_NAN(X), IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) for
valid ROUND_VALUE, and IEEE_SUPPORT_SQRT(X) are all true;
otherwise, the result has the value false.

Case (it): IEEE_SUPPORT_STANDARD() has the value true if and only if
IEEE_SUPPORT_STANDARD(X) has the value true for all real X.

13 May 2002 Page 4 of 4

