10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

13 November 2002 J3/02-324r1

Subject: Module initialization
From: Van Snyder

1 Introduction

Richard Maine has described an application that can be realized most elegantly by automatic
initialization of modules and submodules. It can be realized without automatic initialization,
but this increases both maintenance and development costs.

To outline one small part of the problem that illustrates the utility of automatic initialization,
consider a program that will be augmented by many users to support their needs. Their
augmentation will consist of adding new input routines, among other things; they should not
need to change the majority of the program.

Without automatic initialization, they would need to modify some part of the existing program
in order to add something to a data structure to provide access to the new procedures.

If a facility of automatic initialization is provided, the user can provide an additional module,
extend a type, and use the initializer to link an object of the extended type into a list. The
main part of the program can then access the new functionality, without any modifications
having been made to the main part of the program.

The augmentation is a little bit cleaner with submodule initializers (because the “add this to
your list” routine need not be public), but submodule initializers allow subversion of the privacy
of data in an ancestor module. More severe restrictions than those on pure procedures would
be required to prevent this.

2 Proposition

Allow executable statements after the specification-part of a module and before the module-
subprogram-part. These statements are called the module initializer. This is analogous to
where executable statements are allowed in the main program or a subprogram.

The initializers of all modules upon which a program unit depends by use association shall be
executed before any ezecutable-construct in the execution-part of that program unit is executed,
or any specification expression in that program unit is evaluated. An initializer shall not be
executed more than once.

3 Edits

Edits refer to 02-007r3. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text is to
be replaced by associated text, while a page and line number followed by + (-) indicates that
associated text is to be inserted after (before) the indicated line. Remarks are noted in the
margin, or appear between [and | in the text.

[execution-part]

[Editor: “contains” = “may contain”; “accesses” = “access”.]

[Editor: “units. These” = “units, and may contain an ezecution-part. The”|

The execution-part of a module is a module initializer.

13 November 2002 Page 1 of 3

9:32+
13:14
13:15
13:16+

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

13 November 2002 J3/02-324r1

[Editor: In the “executable statement” and “FORMAT statements” rows of the MODULE
column of table 2.2, change “no” to “yes” twice.]

Editor: After “program.” insert “Executing an end-module-stmt causes normal termination of
prog g
execution of a module initializer.”]

The end-block-data-stmt statement is nonexecutable.

Execution of a main program, a subprogram, or a module initializer involves execution of
the ezecutable-constructs within its scoping unit. With the following exceptions, the effect of
execution is as if the executable-constructs are executed in the order they appear until a STOP,
RETURN or END statement is executed. The exceptions are the following:

The initializers of all modules upon which a program unit depends by use association or host
association, either directly or indirectly, shall be executed before any ezxecution-construct in the
erecution-part of that program unit is executed, or any specification expression in that program
unit that is not an initialization expression is evaluated.

It is processor dependent whether the initializers of modules that are not accessed by use
association are executed.

An initializer shall not be executed more than once.

If a program contains a Fortran main program, execution of the program begins by executing
any necessary initializers, followed by execution of the main program.

Execution of the main program or an initializer begins with the first ezecutable-construct of
its execution-part. When a procedure is invoked, execution begins with the first ezecutable-
construct following the invoked entry point.

[Editor: Add a sentence in the same paragraph: “The execution sequence of a module initializer
excludes module procedures within the module.”]

[Editor: Insert “ and may contain an ezecution-part” after “units”.]

execution-part
p

[Editor: In the first line of Note 11.4, replace the first comma by “and” and delete “, and
FORMAT statements”.]

[Editor: Insert a new subclause before C.1:]
C.1 Section 2 notes

A sequence of execution of module initializers that satisfies the requirements in 2.3.4 may be
determined by a processor that is applied after every program unit is translated and before the
program units are linked together into a program, or by the processor that links the program
units into a program. The processor may cause all initializers to be executed before the main
program is executed. Processors for languages other than Fortran that provide for the equivalent
of module initializers, including Ada and Modula-2, have used these and other strategies.

Alternatively, the need to execute an initializer may be determined dynamically as the program
executes. In this case, it would be necessary for each initializer to determine whether it had
been executed, so as not to be executed more than once. If an initializer has been executed,
every initializer upon which it depends by use or host association has also been executed, so it
is not necessary to proceed from one initializer to initializers for modules upon which it depends
if it has been executed.

13 November 2002 Page 2 of 3

14

15:1

15:3
15:5-11

15:18+
New ¢

15:20

246:3
246:9+
246:25+4

431:3+

13 November 2002 J3/02-324r1

4 For the record, for submodule initializers. ..

If submodule initializers are ever done, they should be restricted so as to inhibit their ability
to subvert the ancestor module’s private data. Sufficient restrictions are (1) a variable that is
accessed by use association, directly or indirectly, shall not appear in a variable definition con-
text, and (2) a procedure invoked by an initializer or initializer procedure shall be an initializer
procedure; it shall not have a dummy procedure, and shall observe these restrictions.

13 November 2002 Page 3 of 3

