
14 November 2002 J3/03-101

Subject: Editorial comments
From: Van Snyder

1 Introduction1

As one might expect, there are still problems in the draft.2

2 Edits that are unavoidable or that ought not to be substantive3

Edits refer to 02-007r3. Page and line numbers are displayed in the margin. Absent other instructions, a4

page and line number or line number range implies all of the indicated text is to be replaced by associated5

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after6

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.7

[Editor: “CMPLX function” ⇒ “function CMPLX” (for consistency with the rest of the paragraph).] 35:168

[Editor: Insert “ The ” after “(R534)”.] 86:79

[C576 says that “a proc-entity-name shall also be declared in a procedure-declaration-stmt .” But at 89:4-510

[260:25] the declared thing-o is called a procedure-entity-name. Editor: “proc-entity-name” ⇒ “procedure-11

entity-name” twice.]12

[The phrase “the derived-type definition of the declared type” makes inheritance association worthless. 103:513

The components inherited from the parent type are components of the declared type, but they’re gotten14

by inheritance association, rather than by being declared in its derived-type definition. Editor: Delete15

“the derived-type definition of”.]16

[Mostly doesn’t belong here because it mostly has nothing to do with type, type parameters and shape. 124:3-1217

The part about type, type parameters and shape is at [123:31-32], which implicitly refers to 5.1.0 and18

5.1.1, [32:22-26] and [77:21-22]. The part about reference doesn’t belong here, but it is at [101:2-4].19

A primary’s value isn’t tied in to expressions, however, so we’ll do that in 7.1.8.1. The part about20

a pointer not being associated with a target is wrong because a primary isn’t what appears in those21

contexts, which are correctly described at [81:24-25], [143:29-30] and [265:24], and if this stuff did belong22

here and we wanted to repeat it, it would be misleadingly incomplete because it doesn’t account for23

inquiry functions. [124:11-12] can’t possibly be related to primaries because a disassociated pointer or24

an unallocated allocatable can’t be used as a primary. The parts about having rank but no shape are25

covered in 5.1.2.5.3. The part about the NULL intrinsic is covered in 13.7.84.]26

NOTE 7.8 1
2

If a primary is a pointer it shall be associated with a target, and the target is referenced.

[Unlike Note 7.13 1
2 , this note is to remind the reader that the type, type parameters and shape come27

from the pointer’s target.]28

[The type, type parameters and shape of a primary are tied into an expression by 7.1.4.1, but nothing 129:11-
New ¶

29

ties the value of a primary into an expression. This seems like a good place to do it. This will also hook30

Section 6 to an expression, because Section 6 begins with “The appearance of a data object designator in31

a context that requires its value. . . .” Nothing specifies what type-param-inquiry and type-param-name32

mean where they appear as primaries.]33

If an operand is a primary, the value of the operand is the value of the primary. If the primary is a34

data object designator its value is as specified in 2.4.2 and 2.4.3. If it is a function reference, its value35

is as specified in 2.4.3. If it is a type-param-inquiry or a type-param-name its value is the value of the36

specified type parameter (4.2, 6.1.3). If it is an expression enclosed in parentheses its value is the value37

of the expression.38

[I don’t think we do an adequate job of specifying that the syntax of a primary denotes its value, but39

Malcolm contends the first sentence is a mere sophistry, and that 6.1.3 does an adequate job for a40

14 November 2002 Page 1 of 3

14 November 2002 J3/03-101

type-param-inquiry or a type-param-name.]1

NOTE 7.13 1
2

If a primary is a pointer it shall be associated with a target, and the target is referenced.

[Unlike Note 7.8 1
2 , this note is to remind the reader that the value comes from the pointer’s target. I’m2

not comfortable with the description of a function result in 2.4.3 in the case of a function result that’s3

a pointer. Does it hang together?]4

[The whole of subclause 7.4.1.3 is about intrinsic assignment. Editor: Delete “in an intrinsic assignment” 140:1,35

twice. We didn’t find it to be necessary at [139:28].]6

[We don’t want to force these events if they’re unnecessary – just the appearance that they happen. 141:97

Editor: Insert “result is as if the” before “following”; “is’ ⇒ “were”. Malcolm says this is unnecessary:8

If a standard-conforming program cannot tell the difference, there is no difference.]9

[The “or a procedure pointer” part of C727 makes it clear we intended to allow pointer1 => pointer210

where both pointers are procedure pointers, but it doesn’t work because the syntax of procedure-name11

is too limited: There’s no explicit rule for procedure-name, so it’s covered by R102 and R304.]12

or proc-pointer-name 143:23+13

or data-ref % procedure-component-name14

15

C726 1
2 (R741) The procedure-component-name shall be the name of a procedure pointer component of 143:24+16

the declared type of data-ref .17

[Editor: Insert “or” before “a” at [143:25] and delete “, or a procedure pointer” at [143:26].] 143:25-2618

[The strategy of defining “interface” by first defining “abstract interface” and then using that concept 253:1419

to define the interface of arbitrary entities that have explicit interface was changed at meeting 162. This20

instance of “abstract interface” is an oversight. Editor: “abstract interface” ⇒ “characteristics”.]21

[In order for keyword-identified arguments to work, the interface needs to include the argument keywords. 253:1422

Editor: After “name” insert “, the argument keywords”.]23

[An interface body specifies an explicit specific interface, not just an explicit interface. Editor: Insert 255:4224

“specific” after “explicit”.]25

[Editor: Insert a blank after the first comma.] 258:526

[Assignment isn’t an operation. Editor: delete “the” and “operation”.] 259:1427

[Could be construed to make inheritance worthless. Editor: “in” ⇒ “declared within or inherited into” 263:11-1228

twice.]29

[The result types of AMAX0, AMIN0, MAX1 and MIN1 aren’t specifically given in 13.6. Are the 294:9-12+130

kludges for these four functions good enough? They should be in a separate description that doesn’t31

claim ”AMAX0(...)” and ”REAL(MAX(...))” are names.]32

13.6 Names and characteristics of specific standard intrinsic functions33

References to the specific standard intrinsic functions AMAX0, AMIN0, MAX1 and MIN1 are equivalent34

to references to generic functions shown in Table 13.1.35

[The table number really will be 13.1 when it appears in 007.]36

Table 1: Characteristics of AMAX0, AMIN0, MAX1 and MIN1
Specific Reference Generic Reference Argument Type Result type
AMAX0(...) REAL(MAX(...)) Default integer Default real
AMIN0(...) REAL(MIN(...)) Default integer Default real
MAX0(...) INT(MAX(...)) Default real Default integer
MIN0(...) INT(MIN(...)) Default real Default integer

14 November 2002 Page 2 of 3

14 November 2002 J3/03-101

The result type of a specific function listed in Table 13.2 is the same as the result type of the corresponding1

generic function would be if it were invoked with the same arguments as the specific function.2

[The table number really will be 13.2 when it appears in 007.]3

Table 2: Characteristics of specific standard intrinsic functions
[Remove AMAX0, AMIN0, MAX1 and MIN1 from Table 13.2.4

At [80:5], [143:26], [260:29], [263:38] and [268:6], replace “13.6” by “Table 13.2”.]5

[What’s the point of identical names in columns one and two of the table in 13.6 where the row is marked 2956

with a bullet? The only cases where a specific intrinsic is important are where they are required to be7

one not marked with a bullet. Editor: Delete the rows for ICHAR, INT, LGE, LGT, LLE, LLT, and8

REAL from the table.]9

[Why be coy about the type? And REAL only has one type parameter. Editor: “variable of the same 340:1010

type and kind type parameters” ⇒ “real variable with the same kind type parameter”.]11

[“. . . would have if its value was. . . ” is ungrammatical. It could be repaired with “was” ⇒ “were” but 340:10-1112

it’s simpler to put it directly. Editor: “would have” ⇒ “has”; “were” ⇒ “is”.]13

[C doesn’t use an asterisk to denote an unspecified size. One might be tempted to delete the asterisk, 388:1314

but then the remaining [] syntax doesn’t specify a size, which is what the first phrase of the second15

clause specifies. Editor: Delete “or specifies a size of [*]”.]16

[Editor: “Fortran” ⇒ “FORTRAN”.] 451:3217

3 Edits that might be substantive18

[Did we really intend not to allow a list on a type-bound procedure binding? If we want a list:] 44:21-2219

[[, binding-attr-list] ::] proc-binding-list20

R441 1
2 proc-binding is binding-name [=> binding]21

C444 If => binding appears, the double-colon separator shall appear before the proc-binding-list .22

[Why do we allow several allocate-objects if a type-spec appears, but only one if SOURCE= appears? If23

we want to allow several:]24

[Editor: “allocation-list . . . which” ⇒ “each allocate-object”.] 109:20-2125

C302 (R623) If source-variable is not a scalar, every allocate-object shall have the same rank as source- 109:2226

variable.27

[Editor: “allocation” ⇒ “each allocate-object”.] 110:628

[Editor: Insert “each” after “to”.] 110:929

[We don’t provide for a procedure pointer to get its target from a binding. If this was an oversight:]30

or data-ref % binding-name 143:23+31

C726 1
2 (R741) The binding-name shall be the name of an accessible specific binding declared within or 143:24+32

inherited into the declared type of data-ref .33

If proc-target is data-ref % binding-name the proc-pointer-object becomes pointer associated with the 144:26+34

dynamic binding (12.4).35

14 November 2002 Page 3 of 3

