
J3/03-123

WORKING DRAFT

ISO IEC TECHNICAL REPORT 19767

ISO/IEC JTC1 WG5 PROJECT 1.22.02.01.01.01

Enhanced Module Facilities

in

Fortran

An extension to IS 1539-1

18 February 2003

THIS PAGE TO BE REPLACED BY ISO-CS

J3/03-123

Contents
0 Introduction . ii

0.1 Shortcomings of Fortran’s module system . ii
0.2 Disadvantage of using this facility . iii

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 Summary . 2
2.2 Submodules . 2
2.3 Separate module procedure and its corresponding forward interface body 2
2.4 Examples of modules with submodules . 3
2.5 Relation between modules and submodules . 4

3 Required editorial changes to ISO/IEC 1539-1 . 5

i

J3/03-123

Foreword

[General part to be provided by ISO CS]

This technical report specifies an extension to the module program unit facilities of the programming
language Fortran. Fortran is specified by the international standard ISO/IEC 1539-1. This document
has been prepared by ISO/IEC JTC1/SC22/WG5, the technical working group for the Fortran language.

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran standard (ISO/IEC 1539-1) without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or
changes are needed to achieve proper integration, in which case every reasonable effort will be made to
minimize the impact of such changes on existing implementations.

0 Introduction

The module system of Fortran, as standardized by ISO/IEC 1539-1, while adequate for programs of
modest size, has shortcomings that become evident when used for large programs, or programs having
large modules. The primary cause of these shortcomings is that modules are monolithic.

This technical report extends the module facility of Fortran so that program developers can optionally
encapsulate the implementation details of module procedures in submodules that are separate from
but dependent on the module in which the interfaces of their procedures are defined. If a module or
submodule has submodules, it is the parent of those submodules.

The facility specified by this technical report is compatible to the module facility of Fortran as stan-
dardized by ISO/IEC 1539-1.

0.1 Shortcomings of Fortran’s module system

The shortcomings of the module system of Fortran, as specified by ISO/IEC 1539-1, and solutions offered
by this technical report, are as follows.

0.1.1 Decomposing large and interconnected facilities

If an intellectual concept is large and internally interconnected, it requires a large module to implement
it. Decomposing such a concept into components of tractable size using modules as specified by ISO/IEC
1539-1 may require one to convert private data to public data.

Using facilities specified in this technical report, such a concept can be decomposed into modules and
submodules of tractable size, without exposing private entities to uncontrolled use.

Decomposing a complicated intellectual concept may furthermore require circularly dependent modules,
but this is prohibited by ISO/IEC 1539-1. It is frequently the case, however, that the dependence is
between the implementation of some parts of the concept and the interface of other parts. Because
the module facility defined by ISO/IEC 1539-1 does not distinguish between the implementation and
interface, this distinction cannot be exploited to break the circular dependence. Therefore, modules that
implement large intellectual concepts tend to become large, and therefore expensive to maintain reliably.

Using facilities specified in this technical report, complicated concepts can be implemented in submodules
that access modules, rather than modules that access modules, thus reducing the possibility for circular
dependence between modules.

ii

J3/03-123

0.1.2 Avoiding recompilation cascades

Once the design of a program is stable, most changes in modules occur in the implementation of those
modules – in the procedures that implement the behavior of the modules and the private data they
retain and share – not in the interfaces of the procedures of the modules, nor in the specification of
publicly accessible types or data entities. Changes in the implementation of a module have no effect on
the translation of other program units that access the changed module. The existing module facility,
however, draws no structural distinction between interface and implementation. Therefore, if one changes
any part of a module, most language translation systems have no alternative but to conclude that a
change might have occurred that could affect other modules that access the changed module. This effect
cascades into modules that access modules that access the changed module, and so on. This can cause a
substantial expense to retranslate and recertify a large program. Recertification can be severals orders
of magnitude more costly than retranslation.

Using facilities specified in this technical report, implementation details of a module can be encapsulated
in submodules. Submodules are not accessible by use association, and they depend on their parent
module, not vice-versa. Therefore, submodules can be changed without implying that other modules
must be translated differently.

If a module is used only in the implementation of a second module, a third module accesses the second,
and one changes the interface of the first module, utilities that examine the dates of files have no
alternative but to conclude that a change may have occurred that could affect the translation of the
third module.

Modules can be decomposed using facilities specified in this technical report so that a change in the
interface of a module that is used only in a submodule has no effect on the parent of that submodule,
and therefore no effect on the translation of other modules that use the second module. Thus, compilation
cascades caused by changes of interface can be shortened.

0.1.3 Packaging proprietary software

If a module as specified by international standard ISO/IEC 1539-1 is used to package proprietary soft-
ware, the source text of the module cannot be published as authoritative documentation of the interface
of the module, without either exposing trade secrets, or requiring the expense of separating the imple-
mentation from the interface every time a revision is published.

Using facilities specified in this technical report, one can easily publish the source text of the module
as authoritative documentation of its interface, while witholding publication of the source text of the
submodules that contain the implementation details, and the trade secrets embodied within them.

0.1.4 Easier library creation

Most Fortran translator systems produce a single file of computer instructions and data, called an object
file, for each module. This is easier than producing an object file for the specification part and one for
each module procedure. It is also convenient, and conserves space and time, when a program uses all or
most of the procedures in each module. It is inconvenient, and results in a larger program, when only a
few of the procedures in a general purpose module are needed in a particular program.

Modules can be decomposed using facilities specified in this technical report so that is easier for each
program unit’s author to control how module procedures are allocated among object files.

0.2 Disadvantage of using this facility

Translator systems will find it more difficult to carry out inter-procedural optimizations if the pro-
gram uses the facility specified in this technical report. When translator systems become able to do

iii

J3/03-123

inter-procedural optimization in the presence of this facility, it is likely that requesting inter-procedural
optimization will cause compilation cascades in the first situation mentioned in section 0.1.2, even if
this facility is used. Although one advantage of this facility could perhaps be nullified in the case when
users request inter-procedural optimization, it would remain if users do not request inter-procedural
optimization, and the other advantages remain in any case.

iv

TECHNICAL REPORT 19767 J3/03-123

Information technology – Programming Languages – Fortran

Technical Report: Enhanced Module Facilities

1 General

1.1 Scope1

This technical report specifies an extension to the module facilities of the programming language Fortran.2

The current Fortran language is specified by the international standard ISO/IEC 1539-1 : Fortran. The3

extension allows program authors to develop the implementation details of concepts in new program4

units, called submodules, that cannot be accessed directly by use association. In order to support5

submodules, the module facility of international standard ISO/IEC 1539-1 is changed by this technical6

report in such a way as to be upwardly compatible with the module facility specified by international7

standard ISO/IEC 1539-1.8

Clause 2 of this technical report contains a general and informal but precise description of the extended9

functionalities. Clause 3 contains detailed editorial changes that would implement the revised language10

specification if they were applied to the current international standard.11

1.2 Normative References12

The following standards contain provisions that, through reference in this text, constitute provisions13

of this technical report. For dated references, subsequent amendments to, or revisions of, any of these14

publications do not apply. Parties to agreements based on this technical report are, however, encouraged15

to investigate the possibility of applying the most recent editions of the normative documents indicated16

below. For undated references, the latest edition of the normative document referenced applies. Members17

of IEC and ISO maintain registers of currently valid International Standards.18

ISO/IEC 1539-1 : Information technology - Programming Languages - Fortran19

1

TECHNICAL REPORT 19767 J3/03-123

2 Requirements1

The following subclauses contain a general description of the extensions to the syntax and semantics2

of the current Fortran programming language to provide facilities for submodules, and to separate3

subprograms into interface and implementation parts.4

2.1 Summary5

This technical report defines a new entity and modifications of two existing entities.6

The new entity is a program unit, the submodule. As its name implies, a submodule is logically part of7

a module, and it depends on that module. A new variety of interface body, a forward interface body,8

and a new variety of procedure, a separate module procedure, are described below.9

By putting a forward interface body in a module and its corresponding separate module procedure in10

a submodule, program units that access the interface body by use association do not depend on the11

procedure’s body. Rather, the procedure’s body depends on its interface body.12

2.2 Submodules13

A submodule is a program unit that is dependent on and subsidiary to a module or another submodule.14

A module or submodule may have several subsidiary submodules. If it has subsidiary submodules, it is15

the parent of those subsidiary submodules, and each of those submodules is a child of its parent. A16

submodule accesses its parent by host association.17

An ancestor of a submodule is that submodule, or an ancestor of its parent. A descendant of a module18

or submodule is that program unit, or a descendant of a child of that program unit.19

A submodule is introduced by a statement of the form SUBMODULE (parent-name) submodule-name,20

and terminated by a statement of the form END SUBMODULE submodule-name. The parent-name is the21

name of the parent module or submodule.22

Identifiers in a submodule are effectively PRIVATE, except for the names of separate module procedures23

that correspond to public forward interface bodies in the parent module. It is not possible to access24

entities declared in the specification part of a submodule by use association because a USE statement25

is required to specify a module, not a submodule. ISO/IEC 1539-1 permits PRIVATE and PUBLIC26

declarations only in a module, and this technical report does not propose to change that specification.27

In all other respects, a submodule is identical to a module.28

2.3 Separate module procedure and its corresponding forward interface body29

A forward interface body is different from an interface body defined by ISO/IEC 1539-1 in three30

respects. First, it is declared in an interface block that is introduced by a FORWARD INTERFACE31

statement. Second, in addition to specifying a procedure’s characteristics and dummy argument names,32

a forward interface body specifies that its corresponding procedure body is in a descendant of the module33

or submodule in which it appears. Third, unlike an ordinary interface body, it accesses the module or34

submodule in which it is declared by host association.35

If a module procedure is enclosed between IMPLEMENTATION and END IMPLEMENTATION state-36

ments, it is a separate module procedure. It shall have the same name as a forward interface body37

that is declared in a module or submodule that is an ancestor of the one in which the procedure is de-38

fined. Its characteristics and dummy argument names are declared by its corresponding interface body.39

The procedure is accessible if and only if its interface body is accessible.40

2

TECHNICAL REPORT 19767 J3/03-123

The characteristics and dummy argument names may be redeclared in the module subprogram that1

defines the separate module procedure. If the characteristics and dummy argument names are redeclared,2

they shall be the same as in the interface body, except that the procedure’s body may specify that the3

procedure is pure even if the interace body does not.4

If the procedure is a function, the result variable name is determined by the declaration of the module5

subprogram, not by the forward interface body. If the forward interface body declares a result variable6

name different from the function name, that declaration is ignored, except for its use in specifying the7

result variable characteristics.8

2.4 Examples of modules with submodules9

The example module POINTS below declares a type POINT and a forward interface body for a module10

function POINT DIST. Because the interface block includes the FORWARD prefix, the interface body within11

it accesses the scoping unit of the module by host association, without needing an IMPORT statement.12

The declaration of the result variable name DISTANCE serves only as a vehicle to declare the result13

characteristics; the name is otherwise ignored.14

MODULE POINTS15

TYPE :: POINT16

REAL :: X, Y17

END TYPE POINT18

19

FORWARD INTERFACE20

FUNCTION POINT_DIST (A, B) RESULT (DISTANCE)21

TYPE(POINT), INTENT(IN) :: A, B ! Accessed by host association22

REAL :: DISTANCE23

END FUNCTION POINT_DIST24

END INTERFACE25

END MODULE POINTS26

The example submodule POINTS A below is a submodule of the POINTS module. The scope of the27

type name POINT extends into the submodule. The characteristics of the function POINT DIST can be28

redeclared in the module function body, or taken from the forward interface body in the POINTS module.29

The fact that POINT DIST is accessible by use association results from the fact that there is a forward30

interface body of the same name in the ancestor module.31

SUBMODULE (POINTS) POINTS_A32

CONTAINS33

IMPLEMENTATION POINT_DIST34

REAL FUNCTION POINT_DIST (P, Q) RESULT (HOW_FAR)35

TYPE(POINT), INTENT(IN) :: P, Q36

HOW_FAR = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)37

END FUNCTION POINT_DIST38

END IMPLEMENTATION POINT_DIST39

END SUBMODULE POINTS_A40

An alternative declaration of the example submodule POINTS A shows that it is not necessary to redeclare41

the characteristics of the module procedure POINT DIST. The result variable name is POINT DIST, even42

though the forward interface body specifies a different result variable name.43

SUBMODULE (POINTS) POINTS_A44

3

TECHNICAL REPORT 19767 J3/03-123

CONTAINS1

IMPLEMENTATION POINT_DIST2

FUNCTION POINT_DIST3

TYPE(POINT), INTENT(IN) :: P, Q4

POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)5

END FUNCTION POINT_DIST6

END IMPLEMENTATION POINT_DIST7

END SUBMODULE POINTS_A8

2.5 Relation between modules and submodules9

Public entities of a module, including module interface bodies, can be accessed by use association. The10

only entities of submodules that are accessible by use association are separate module procedures for11

which there is a corresponding publicly accessible forward interface body.12

A submodule accesses the scoping unit of its parent module or submodule by host association.13

4

TECHNICAL REPORT 19767 J3/03-123

3 Required editorial changes to ISO/IEC 1539-11

The following editorial changes, if implemented, would provide the facilities described in foregoing sec-2

tions of this report. Descriptions of how and where to place the new material are enclosed between3

square brackets.4

[After the third right-hand-side of syntax rule R202 insert:] 9:12+5

or submodule6

[After syntax rule R1104 add the following syntax rule. This is a quotation of the “real” syntax rule in 9:34+7

subclause 11.2.3.]8

R1115a submodule is submodule-stmt9

[specification-part]10

[module-subprogram-part]11

end-submodule-stmt12

[In the second line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.] 11:4213

[In the fourth line of the first paragraph of subclause 2.2 insert a new sentence:] 11:4414

A submodule is an extension of a module; it may contain the definitions of procedures declared in a15

module or another submodule.16

[In the sixth line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.] 11:4617

[In the penultimate line of the first paragraph of subclause 2.2 insert “or submodule” after “module”.] 11:4818

[Replace the second sentence of 2.2.3.2 by the following sentence.] 12:27-2919

A module procedure may be invoked from within any scoping unit that accesses its declaration (12.3.2.1)20

or definition (12.5).21

[Insert the following note at the end of 2.2.3.2.] 12:30+22

NOTE 2.2 1
2

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by
host association.

[Insert a new subclause:] 13:17+23

2.2.5 Submodule24

A submodule is a program unit that extends a module or submodule. It contains definitions (12.5)25

for procedures whose interfaces are declared (12.3.2.1) in its parent module or submodule. It may also26

contain declarations and definitions of entities that are accessible to descendant submodules. An entity27

declared in a submodule is not accessible by use association, but a procedure that is declared in a module28

and defined in one of that module’s submodules is accessible by use association.29

[In the second line of the first row of Table 2.1 insert “, SUBMODULE” after “MODULE”.] 1430

[Change the heading of the third column of Table 2.2 from “Module” to “Module or Submodule”.] 1431

5

TECHNICAL REPORT 19767 J3/03-123

[In the second footnote to Table 2.2 insert “or submodule” after “module” and change “the module” to 141

“it”.]2

[In the last line of 2.3.3 insert “, end-submodule-stmt” after “end-module-stmt”.] 15:33

[In the first line of the second paragraph of 2.4.3.1.1 insert “, submodule” after “module”.] 17:44

[At the end of 3.3.1, immediately before 3.3.1.1, add “END SUBMODULE” to the list of adjacent 285

keywords where blanks are optional.]6

[In the third line of the first paragraph of 4.5.1.8 replace “itself” by “and all of its descendant submod- 50:227

ules”.]8

[In the last line of the second paragraph of 4.5.1.8, after “definition” add “and all of its descendant 50:289

submodules”.]10

[In the last line of the fourth paragraph of 4.5.1.8, after “definition”, add “and all of its descendant 51:611

submodules”.]12

[In the last line of the first paragraph after Note 4.34, after “definition” add “and all of its descendant 51:813

submodules”.]14

[In the last line of Note 4.37, after “module” add “and all of its descendant submodules”.] 5115

[In the last line of Note 4.38, after “defined” add “, and all of its descendant submodules”.] 5116

[In the last line of Note 4.39, after “definition” add “and all of its descendant submodules”.] 5217

[In the third line of the second paragraph of 4.5.10.1 insert “or submodule” after “module”. In the third 60:1918

and fourth line, replace “referencng the module” by “that has access to that program unit”.]19

[In the first line of the second paragraph of Note 4.58, insert “or submodule” after “module”.] 6120

[In constraint C531 insert “or submodule” after “module”.] 69:3321

[In the first line of the second paragraph of 5.1.2.12 insert “, or any of its descendant submodules” after 81:2622

“attribute”.]23

[In the first line of the second paragraph of 5.1.2.13 insert “or any of its descendant submodules” after 82:924

“module”.]25

[In constraint C558 insert “or submodule” after “module”.] 85:1026

[After the second paragraph after constraint C580 insert the following note.] 91:7+27

[In the third line of the penultimate paragraph of 6.3.1.1 replace “or a subobject thereof” by “or sub- 111:1528

module, or a subobject thereof,”.]29

[In the first line of the first paragraph after Note 6.22 insert “or submodule” after “module”.] 113:930

[In the fourth item in the list in 6.3.3.2 insert “or submodule” after the first “module”.] 115:1031

6

TECHNICAL REPORT 19767 J3/03-123

[In the second line of the first paragraph of Section 11 insert “, a submodule” after “module”.] 245:31

[In the first line of the second paragraph of Section 11 insert “, submodules” after “modules”.] 245:42

[After the second right-hand side for R1108 add:] 246:17+3

or implementation4

[In constraint C1105 insert “or submodule” after “module”.] 246:205

[In constraint C1106 insert “or submodule” after “module”.] 246:226

[In constraint C1107 insert “or submodule” after “module”.] 246:247

[Within the first paragraph of 11.2.1, at its end, insert the following sentence:] 247:48

A submodule shall not reference its ancestor module by use association, either directly or indirectly.9

[Then insert the following note:]10

NOTE 11.6 1
2

It is possible for submodules of different modules to access each others’ ancestor modules.

[After constraint C1109 insert an additional constraint:] 247:36+11

C1109a (R1109) If the USE statement appears within a submodule, module-name shall not be the name12

of the ancestor module of the submodule.13

[Insert a new subclause immediately before 11.3:] 249:6-14

11.2.3 Submodules15

A submodule is a program unit that depends on a module or another submodule. The program unit16

on which a submodule depends is its parent module or submodule; its parent is specified by the parent-17

name in the submodule-stmt. A submodule is a child of its parent. An ancestor of a submodule is that18

submodule or an ancestor of its parent. A descendant of a module or submodule is that program unit19

or a descendant of one of its child submodules.20

A submodule accesses the scoping unit of its parent module or submodule by host association.21

A submodule may provide implementations for module procedures that are declared by forward interface22

bodies within ancestor program units, and declarations and definitions of other entities that are accessible23

by host association in descendant submodules.24

R1115a submodule is submodule-stmt25

[specification-part]26

[module-subprogram-part]27

end-submodule-stmt28

R1115b submodule-stmt is SUBMODULE (parent-name) submodule-name29

7

TECHNICAL REPORT 19767 J3/03-123

R1115c end-submodule-stmt is END [SUBMODULE [submodule-name]]1

C1114a (R1115a) The parent-name shall be the name of a submodule or a nonintrinsic module.2

C1114b (R1115a) The submodule-name shall not be the same as parent-name.3

C1114c (R1115c)If a submodule-name is specified in the end-submodule-stmt , it shall be identical to the4

submodule-name specified in the submodule-stmt .5

NOTE 11.12 1
2

A procedure in a module or submodule has access to every entity in its ancestor program units.
Even if no other program unit has access to the module or submodule, there may be an active
procedure invoked by way of a procedure pointer or by means other than Fortran that has access
to it. This may affect finalization (4.5.10.1) or undefinition (6.3.3.2, 16.4.2.1.3, 16.5.6).

[In the third line of the second paragraph of 12.3 replace “, but” by “. If the dummy arguments are 253:156

redeclared in a separate module procedure body (12.5.2.5) they shall have the same names as in the7

corresponding module interface body (12.3.2.1); otherwise”.]8

[Replace the first line of syntax rule R1203 with the following:] 254:219

R1203 interface-stmt is interface-stmt [FORWARD] INTERFACE [generic-spec]10

[Add a new constraint after C1204:] 255:5+11

C1204a (R1203) FORWARD shall not appear except in the specification-part of a module.12

[Add a new constraint after C1209:] 255:24+13

C1209a (R1206) A procedure-stmt shall not appear in an interface block that is introduced by a FOR-14

WARD INTERFACE statement.15

[Add a new constraint after Constraint C1211:] 255:26+16

C1211a (R1209) An IMPORT statement shall not appear within an interface body that is declared17

within an interface block that is introduced by a FORWARD INTERFACE statement.18

[After the third paragraph after constraint C1211 insert the following paragraph and note.] 255:36+19

A forward interface body is an interface body that appears in an interface block introduced by a20

FORWARD INTERFACE statement. It declares the interface for a separate module procedure (12.5.2.5).21

A separate module procedure is accessible by use association if and only if its interface body is accessible22

by use association. If the definition of its procedure body does not appear within the module-subprogram-23

part of the program unit in which the module interface body is declared, or one of its descendant24

submodules (11.2.3), the interface may be used but the procedure shall not be used in any way.25

A forward interface is declared by a forward interface body.26

NOTE 12.3 1
2

A forward interface body shall not appear except within an interface block within the specification-
part of a module or submodule.

[In the first sentence of the fourth paragraph after constraint C1211 insert “, that is not a forward 255:3727

8

TECHNICAL REPORT 19767 J3/03-123

interface body,” after “block”.]1

[Move the sentence “An interface for a procedure named by an ENTRY statement may be specified by 256:6-72

using the entry name as the procedure name in the interface body” in the last paragraph before Note3

12.4 to be a paragraph in its own right after Note 12.4.]4

[In the first paragraph after Note 12.6 replace the sentence “The characteristics of module procedures are 257:3-45

not given in interface blocks, but are assumed from the module subprograms.” by “The characteristics6

of separate module procedures are declared by forward interface bodies. The characteristics of module7

procedures that are not separate module procedures are not given in interface blocks, but are assumed8

from the module subprograms.”]9

[Insert a new subclause before 12.5.2.4 and renumber succeeding subclauses appropriately.] 279:10-10

12.5.2.4 Separate module procedure definition11

A separate module procedure is a module procedure for which the interface is declared by a forward12

interface body (12.3.2.1) in the specification-part of a module or submodule and the procedure body13

is defined by an implementation in a descendant of the program unit in which the interface body is14

declared.15

NOTE 12.40 1
3

A separate module procedure can be accesseed by use association if and only if its interface body
can be accessed by use association. A separate module procedure that is not accessible by use
association might still be accessible by way of a procedure pointer, a dummy procedure, or a
type-bound procedure.

A module subprogram that defines a separate module procedure may respecify the characteristics de-16

clared in its interface body. If they are respecified, they shall be identical to those specified in its interface17

body, except that the module procedure may be specified to be pure even if the interface body does not18

so specify.19

NOTE 12.40 2
3

As specified in 12.3.2.1, specifications within an interface body that do not specify characteristics
or dummy argument names have no effect. Therefore, if a separate module procedure is to be
recursive, or it is to have a result name different from the function name, these properties must
necessarily be specified within the module subprogram. In these cases, or if it is desired to specify
that the procedure is pure even if the interface does not so specify, it is necessary to respecify the
entire interface.

R1233a implementation is implementation-stmt20

[implementation-body]21

end-implementation-stmt22

R1233b implementation-stmt is IMPLEMENTATION subprogram-name23

C1252b (R1233b) The subprogram-name shall be identical to the name of a forward interface that is24

declared in an ancestor module or submodule of the scoping unit in which the implementation25

appears.26

R1233c end-implementation-stmt is END [IMPLEMENTATION [subprogram-name]]27

C1107a (R1233c) If a subprogram-name appears in the end-implementation-stmt , it shall be identical to28

9

TECHNICAL REPORT 19767 J3/03-123

the subprogram-name specified in the implementation-stmt .1

R1233d implementation-body is function-impl2

or subroutine-impl3

R1233e function-impl is function-subprogram4

or subprogram-body5

R1233f subprogram-body is [specification-part]6

[execution-part]7

[internal-subprogram-part]8

9

C1252c (R1233e) If function-impl is function-subprogram the function-name shall be identical to the10

subprogram-name specified in the implementation-stmt .11

C1252d (R1233e) If function-impl is function-subprogram interface declared by function-impl shall be12

identical to the interface declared by the interface body for the subprogram-name, except that13

it may specify PURE even if the interface declared by the interface body does not.14

R1233g subroutine-impl is subroutine-subprogram15

or subprogram-body16

C1252g (R1233g) If subroutine-impl is subroutine-subprogram the subroutine-name shall be identical to17

the subprogram-name specified in the implementation-stmt .18

C1252h (R1233g) If subroutine-impl is subroutine-subprogram the interface declared by subroutine-impl19

shall be identical to the interface declared by the interface body for the subprogram-name, except20

that it may specify PURE even if the the interface declared by the interface body does not.21

C1258a (R1234) An entry-stmt shall not appear in an implementation-body.22

[In the first line of the first paragraph after syntax rule R1236 in 12.5.2.6 insert “, submodule” after 281:823

“module”,]24

[In item (1) in the first numbered list in 16.2, after “abstract interfaces” insert “, forward interfaces”.] 396:625

[At the end of the first sentence of the second paragraph after the first numbered list in 16.2, add “, 396:1626

the subprogram-name in an implementation may be the same as the name of a forward interface, or the27

name of a function-impl or subroutine-impl may be the same as the name of a forward interface.]28

[In the first line of the first paragraph of 16.4.1.3 insert “, a forward interface body” after “module 400:3229

subprogram”. In the second line, insert “that is not a forward interface body” after “interface body”.]30

[In the second line after the seventeen-item list in 16.4.1.3 insert “that does not define a separate module 401:2831

procedure” after “subprogram”.]32

[In item 2 of 16.5.6 insert “or submodule” after “module”.] 411:3033

[In item 4c of 16.5.6 insert “or submodule” after the first “module” and replace the second “module” by 411:38-3934

“that scoping unit”.35

[Replace Note 16.18 by the following.] 41136

10

TECHNICAL REPORT 19767 J3/03-123

NOTE 16.18
A module subprogram inherently references the module or submodule that is its host. Therefore,
for processors that keep track of when modules or submodules are in use, one is in use whenever
any procedure in it or any of its descendant submodules is active, even if no other active scoping
units reference its ancestor module; this situation can arise if a module procedure is invoked via a
procedure pointer or by means other than Fortran.

[In item 4d of 16.5.6 insert “or submodule” after the first “module” and replace the second “module” 411:40-411

by “that scoping unit”.2

[Insert the following definitions into the glossary in alphabetical order:]3

ancestor (11.2.3) : A module, a submodule, or an ancestor of the parent of that submodule. 415:12+4

child (11.2.3) : A submodule, when considered in its relation to the module or submodule upon which 416:40+5

it depends.6

descendant (11.2.3) : A module or submodule, or a descendant of a child of that module or submodule. 418:22+7

forward interface (12.3.2.1) : An interface defined by an interface body in an interface block introduced 420:6+8

by a FORWARD INTERFACE statement. It declares the interface for a module procedure that has a9

separately-defined body.10

parent (11.2.3) : A module or submodule, when considered in its relation to the submodules that 422:32+11

depend upon it.12

submodule (2.2.5, 11.2.3) : A program unit that depends on a module or another submodule; it extends 425:14+13

the program unit on which it depends.14

[Insert a new subclause immediately before C.9:] 465:33+15

C.8.3.9 Modules with submodules16

Each submodule specifies that it is the child of exactly one parent module or submodule. Therefore, a17

module and all of its descendant submodules stand in a tree-like relationship one to another.18

If a forward interface body that is specified in a module has public accessibility, and its corresponding19

implementation is defined in a descendant of that module, the procedure can be accessed by use asso-20

ciation. No other entity in a submodule can be accessed by use association. Each program unit that21

accesses a module by use association depends on it, and each submodule depends on its ancestor module.22

Therefore, one can change an implementation in a submodule without any possibility of changing the23

interface of the procedure. If a tool for automatic program translation is used, and even if it exploits the24

relative modification times of files as opposed to comparing the result of translating the module to the25

result of a previous translation, modifying a submodule cannot result in the tool deciding to reprocess26

program units that access the module by use association.27

This is not the end of the story. By constructing taller trees, one can put entities at intermediate levels28

that are shared by submodules at lower levels, and have no possibility to affect anything that is accessible29

from the module by use association. Developers of modules that embody large complicated concepts30

can exploit this possibility to organize components of the concept into submodules, while preserving31

the privacy of entities that ought not to be exposed to users of the module and preventing cascades of32

reprocessing.33

The following example illustrates a module, color points, with a submodule, color points a, that in34

turn has a submodule, color points b. Public entities declared within color points can be accessed35

11

TECHNICAL REPORT 19767 J3/03-123

by use association. Except for the characteristics and dummy argument names of implementations that1

have forward interface bodies that are accessible by use association, the submodules color points a2

and color points b can be changed without causing the appearance that the module color points3

might have changed.4

The module color points does not have a contains-part, but a contains-part is not prohibited. The5

module could be published as definitive specification of the interface, without revealing trade secrets6

contained within color points a or color points b. Of course, a similar module without the forward7

prefix in the interface bodies would serve equally well as documentation – but the procedures would be8

external prodcedures. It wouldn’t make any difference to the consumer, but the developer would forfeit9

all of the advantages of modules.10

module color_points11

12

type color_point13

private14

real :: x, y15

integer :: color16

end type color_point17

18

forward interface ! Interfaces for procedures with separate19

! bodies in the submodule color_points_a20

subroutine color_point_del (p) ! Destroy a color_point object21

type(color_point) :: p22

end subroutine color_point_del23

! Distance between two color_point objects24

real function color_point_dist (a, b)25

type(color_point), intent(in) :: a, b26

end function color_point_dist27

subroutine color_point_draw (p) ! Draw a color_point object28

type(color_point) :: p29

end subroutine color_point_draw30

subroutine color_point_new (p) ! Create a color_point object31

type(color_point) :: p32

end subroutine color_point_new33

end interface34

35

end module color_points36

The only entities within color points a that can be accessed by use association are implementations for37

which forward interface bodies are provided in color points. If the procedures are changed but their38

interfaces are not, the interface from program units that access them by use association is unchanged. If39

the module and submodule are in separate files, utilities that examine the time of modification of a file40

would notice that changes in the module could affect the translation of its submodules or of program41

units that access the module by use association, but that changes in submodules could not affect the42

translation of the parent module or program units that access it by use association.43

The variable instance count is not accessible by use association of color points, but is accessible44

within color points a, and its submodules.45

submodule (color_points) color_points_a ! Submodule of color_points46

47

integer, save :: instance_count = 048

12

TECHNICAL REPORT 19767 J3/03-123

1

forward interface ! Interface for a procedure with a separate2

! body in submodule color_points_b3

subroutine inquire_palette (pt, pal)4

use palette_stuff ! palette_stuff, especially submodules5

! thereof, can access color_points by use6

! association without causing a circular7

! dependence because this use is not in the8

! module. Furthermore, changes in the module9

! palette_stuff are not accessible by use10

! association of color_points11

type(color_point), intent(in) :: pt12

type(palette), intent(out) :: pal13

end subroutine inquire_palette14

15

end interface16

17

contains ! Invisible bodies for public forward interfaces declared18

! in the module19

20

implementation color_point_del ! (p)21

instance_count = instance_count - 122

deallocate (p)23

end implementation color_point_del24

implementation color_point_dist25

function color_point_dist (a, b) result(dist)26

type(color_point), intent(in) :: a, b27

dist = sqrt((b%x - a%x)**2 + (b%y - a%y)**2)28

end function color_point_dist29

end color_point_dist30

implementation color_point_new ! (p)31

instance_count = instance_count + 132

allocate (p)33

end implementation color_point_new34

35

end submodule color_points_a36

The subroutine inquire palette is accessible within color points a because its interface is declared37

therein. It is not, however, accessible by use association, because its interface is not declared in the38

module, color points. Since the interface is not declared in the module, changes in the interface39

cannot affect the translation of program units that access the module by use association.40

submodule (color_points_a) color_points_b ! Subsidiary**2 submodule41

42

contains ! Invisible body for interface declared in the parent submodule43

implementation color_point_draw ! (p)44

! Its interface is defined in an ancestor.45

type(palette) :: MyPalette46

...; call inquire_palette (p, MyPalette); ...47

end implementation color_point_draw48

49

implementation inquire_palette50

! "use palette_stuff" not needed because it’s in the parent submodule51

13

TECHNICAL REPORT 19767 J3/03-123

... implementation of inquire_palette1

end implementation inquire_palette2

3

subroutine private_stuff ! not accessible from color_points_a4

...5

end subroutine private_stuff6

7

end submodule color_points_b8

9

module palette_stuff10

type :: palette ; ... ; end type palette11

contains12

subroutine test_palette (p)13

! Draw a color wheel using procedures from the color_points module14

type(palette), intent(in) :: p15

use color_points ! This does not cause a circular dependency because16

! the "use palette_stuff" that is logically within17

! color_points is in the color_points_a submodule.18

...19

end subroutine test_palette20

end module palette_stuff21

There is a use palette stuff in color points a, and a use color points in palette stuff. The22

use palette stuff would cause a circular reference if it appeared in color points. In this case it does23

not cause a circular dependence because it is in a submodule. Submodules are not accessible by use24

association, and therefore what would be a circular appearance of use palette stuff is not accessed.25

program main26

use color_points27

! "instance_count" and "inquire_palette" are not accessible here28

! because they are not declared in the "color_points" module.29

! "color_points_a" and "color_points_b" cannot be accessed by30

! use association.31

interface (draw) ! just to demonstrate it’s possible32

module procedure color_point_draw33

end interface34

type(color_point) :: C_1, C_235

real :: RC36

...37

call color_point_new (c_1) ! body in color_points_a, interface in color_points38

...39

call draw (c_1) ! body in color_points_b, specific interface40

! in color_points, generic interface here.41

...42

rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points43

...44

call color_point_del (c_1) ! body in color_points_a, interface in color_points45

...46

end program main47

Multilevel submodule systems can be used to package and organize a large and interconnected concept48

without exposing entities of one subsystem to other subsystems.49

14

TECHNICAL REPORT 19767 J3/03-123

Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to1

fluid flow, thermodynamics, and electromagnetism. Fluid flow simulation requires simulation of subsonic,2

supersonic, and hypersonic flow. This problem decomposition can be reflected in the submodule structure3

of the Plasma module:4

Plasma module5

|6

|---------------------|---------------------|7

| | |8

Flow submodule Thermal submodule Electromagnetics9

| Submodule10

|-------------------|-------------------|11

| | |12

Subsonic Supersonic Hypersonic13

Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting14

them within the Flow submodule. One then need not worry about accidental use of these entities by15

use association or by the Thermal or Electromagnetics modules, or the development of a dependency16

of correct operation of those subsystems upon the representation of entities of the Flow subsystem as a17

consequence of maintenance.18

15

