
J3/03-143r1
To: WG5/J3
From: Lawrie Schonfelder
Subject: Comments on draft TR on Module Enhancements J3/03-123
Date: Mar 2003
Subsequent to writing the previous version of this paper I have spent some time looking carefully at the
issues related to the functionality needed for this enhancement. My conclusion is that the previous paper,
J3/03-143, was broadly correct in its conclusions but not in its emphasis nor in its presentation.
Having decided that a submodule approach to supporting the separation of the design of user interface and
facility implementation is the right one, the key issue is what is the relationship between a submodule and
its parent module. In Fortran terms what is the nature of the association between entities in the parent and
entities of the same name in a submodule. It should be noted that what we are defining as a submodule is
an additional non-executable program unit similar to a module and which like a module constitutes a
separate scoping unit.
A submodule is delimited by statements of the form
SUBMODULE (<parent-name>) <submodule-name>

…

ENDSUBMODULE <submodule-name>

The <parent-name> identifies the parent that will have declared a number of named entities and possibly
accessed a number of others by use association or by a previous level of parent/child association. All of
these entities will be visible in the submodule. The question is what are the association rules that apply to
these entities within the submodule? Host association was suggested in 03-123. This I contend is very
much an inappropriate choice.
Host association currently has two essential propertiies:

1. the host is a containing program unit at the source code level, and
2. if in the contained scope a name available from the host via host association is redeclared then the

local name refers to a new local entity and access to the host entity is masked
Both of these are inappropriate for the submodule/parent relationship. By definition a submodule is not
contained within its parent module. To have a submodule redeclaration of a parent entity create a new
local entity that masks access to the parent entity is likely to cause an error. For example, with the 03-123
the following code structure would be legal.
MODULE POP

 INTEGER,PARAMETER::N=10

FORWARD INTERFACE

 FUNCTION FUN(a)

 REAL::a(N),FUN

 ENDFUNCTION FUN

ENDINTERFACE

ENDMODULE POP

SUBMODULE(POP)::SON

 INTEGER,PARAMETER::N=50 ! new local N masking the host associated N

 CONTAINS

 IMPLEMENTATION FUN

 FUNCTION FUN(a)

 REAL::a(N),FUN ! because of the IMPLEMENTATION bracketing this N is the parent N

 ! not the local one that normally would be accessed in this
context

 ! body of function

 ENDFUNCTION FUN

 ENDIMPLEMENTATION FUN

 FUNCTION SUBFUN(a)

 REAL::a(N),SUBFUN ! no bracketing means this N is the local one accessed normally

 ! body of function

 ENDFUNCTION SUBFUN

ENDSUBMODULE SON

A further complication arises since it would appear to be legal under the proposed host association rule
that SUBFUN could have been named FUN. In this case we have the confusion of which FUN would be
invoked by a reference to FUN in other procedures within the submodule.
An interface body declared in the parent can only refer to a parent entity. If this interface is redeclared in
the submodule but a local entity of a similar name is also declared that masks the parent entity the
characteristics of the procedure could be different and hence in error. Even if language is added to say
that in this case the parent entity is accessed and not the local submodule entity there is much scope for
confusion. Fundamentally any reference within a submodule to a name inherited from the parent should
be a reference to the parent entity.
Use association is closer to what is required but is not totally appropriate either. As currently defined use
association applies from one named program unit to another identified by name, which is essentially what
applies for a submodule/parent. However, use association at present applies only via a USE statement that
must name a module. The entities that are made accessible from this module are controlled first by the
accessibility attributes declared for them in the module and secondly by the controls that are applied
locally on the USE statement. A submodule of necessity must have access to all accessible entities from
its named parent. There is no local control in the parent/child inheritance and the accessibility attributes in
the parent do not apply to this association. Finally use association deals with redeclaration by the simple
expedient of banning it. Any redeclaration of a name made visible by use association is currently defined
as an error.
I contend a new parent association is required. In this case,

1. all entities visible in the parent are accessible in the submodule,
2. redeclaration in part or in full of a parent entity is permitted but such declaration must confirm

attributes and characteristics of the parent entity and are a reference to the parent entity, a new
entity is not created, and

3. although redeclaration is permitted neither redefinition nor reinitialization is allowed (in other
words a data entity can be given a value or a procedure defined once only in any chain of
descendents.

It should be noted that with this form of association between submodule and parent, host association still
applies between the contained scope of a procedure. In the case of the parent declared interface body it
accesses the data environment of the parent by host association and for the implementation defined in the
submodule it accesses the data environment of its containing submodule by host association. In this case
this includes the data environment of the parent inherited into the submodule by the association rules
defined above, plus any new data environment declared within the submodule. This latter by definition
must be additional to and different from the parent data. I contend that this is precisely the desired
behaviour.
The only remaining language that is needed is a keyword to indicate that a specific interface body
declaration applies to a descendent procedure and not an external. This I contend for the reasons set out in
the previous version of this paper should be a keyword that qualifies the interface body not a whole

interface block. In honour of the foresight of Maureen Hoffert who first raised some of these issues with
her “F-word” proposals in 1987, I would propose we spell this FORWARD and it be used a prefix to the
FUNCTION or SUBROUTINE header statement on a interface body.
With this definition of association no other language syntax is needed nor is any desirable. The TR will
be relatively simple in both concept, description and implementation. It will also be straight forward to
employ with very much less scope for opaque or erroneous code.
The following is an example of the sort of program structure that is possible with this proposal. The basic
package is one providing facilities for variable precision arithmetic (drawn from my VPA module). The
interface declarations are included in a parent module and the implementation definitions are given in two
submodules, one defines the arithmetic operations the other the logical comparison procedures.

MODULE VARIABLE_PRECISION_ARITHMETIC

PRIVATE
INTEGER,PARAMETER :: radd=8
INTEGER,PARAMETER :: rad=100000000
TYPE NUMBER
 PRIVATE
 INTEGER :: exp=rad+2 ! holds the base rad exponent
 INTEGER,POINTER :: sig(:)=>NULL()! holds the significand
ENDTYPE NUMBER
INTEGER :: ndig=14 ! controls the current accuracy
 ! initially set to provide at least 104D

INTERFACE ASSIGNMENT(=)
 FORWARD ELEMENTAL SUBROUTINE num_ass_num(var,expr)
 type(NUMBER),INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ENDSUBROUTINE num_ass_num
 FORWARD ELEMENTAL SUBROUTINE num_ass_int(var,expr)
 INTEGER,INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ENDSUBROUTINE num_ass_int
ENDINTERFACE ASSIGNMENT(=)

INTERFACE OPERATOR(+)
 FORWARD ELEMENTAL FUNCTION num_plus_num(l,r)
 type(NUMBER),INTENT(IN) :: l,r
 type(NUMBER) :: num_plus_num
 ENDFUNCTION num_plus_num
FORWARD ELEMENTAL FUNCTION num_plus_int(l,r)
 type(NUMBER),INTENT(IN) :: l
 INTEGER, INTENT(IN) :: r
 type(NUMBER) :: num_plus_int
 ENDFUNCTION num_plus_int
FORWARD ELEMENTAL FUNCTION int_plus_num(l,r)
 INTEGER, INTENT(IN) :: l
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: int_plus_num
 ENDFUNCTION num_plus_num
 FORWARD ELEMENTAL FUNCTION plus_num(r)
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: plus_num
 ENDFUNCTION plus_num
ENDINTERFACE OPERATOR(+)

INTERFACE OPERATOR(<)
 FORWARD ELEMENTAL FUNCTION num_lt_num(l,r) ! OPERATOR(<)
 type(NUMBER),INTENT(IN) :: l,r
 LOGICAL :: num_lt_num

 ENDFUNCTION num_lt_num
ENDINTERFACE OPERATOR(<)

PUBLIC :: NUMBER,PRECISION,ASSIGNMENT(=),OPERATOR(+),OPERATOR(<)

ENDMODULE VARIABLE_PRECISION_ARITHMETIC

The first submodule will define assignment and the arithmetic operators,

SUBMODULE(VARIABLE_PRECISION_ARITHMETRIC)::VPA_ARITH_PROCS

CONTAINS

 ELEMENTAL SUBROUTINE num_ass_num(var,expr) ! redeclares and refers to interface from
 type(NUMBER),INTENT(IN) :: expr ! parent
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment between NUMBER values truncating to current precision if
 ! necessary
 ! body of procedure
 ENDSUBROUTINE num_ass_num

 ELEMENTAL SUBROUTINE num_ass_int(var,expr) ! redeclares and refers to interface from
 INTEGER,INTENT(IN) :: expr ! parent
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment of an INTEGER to a NUMBER performing the required conversion
 ! body of procedure
 ENDSUBROUTINE num_ass_int

 ELEMENTAL FUNCTION num_plus_num(l,r) ! redeclares and refers to interface from
 type(NUMBER),INTENT(IN) :: l,r ! parent
 type(NUMBER) :: num_plus_num
 ! implements addition between a NUMBER and a NUMBER
 ! body of procedure
 ENDFUNCTION num_plus_num

 ELEMENTAL FUNCTION num_plus_int(l,r) ! redeclares and refers to interface from
 type(NUMBER),INTENT(IN) :: l ! parent
 INTEGER, INTENT(IN) :: r
 type(NUMBER) :: num_plus_int
 ! implements addition between a NUMBER and an INTEGER
 ! body of procedure
 ENDFUNCTION num_plus_int

 ELEMENTAL FUNCTION int_plus_num(l,r) ! redeclares and refers to interface from
 INTEGER, INTENT(IN) :: l ! parent
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: int_plus_num
 ! implements addition between an INTEGER and a NUMBER
 ! body of procedure
 ENDFUNCTION int_plus_num

 FORWARD ELEMENTAL FUNCTION plus_num(r) ! redeclares and refers to interface from
 type(NUMBER),INTENT(IN) :: r ! parent
 type(NUMBER) :: plus_num
 ! implements monadic addition for a NUMBER
 ! body of procedure
 ENDFUNCTION plus_num

END SUBMODULE VPA_ARITH_PROCS

Note the redeclarations in the submodule reconfirm the attributes and characteristics of entities accessed
from the parent.
The following submodule would independently implement the logical comparison operators for VPA

SUBMODULE(VARIABLE_PRECISION_ARITHMETRIC)::VPA_COMP_PROCS

CONTAINS
 ELEMENTAL FUNCTION num_lt_num(l,r) ! OPERATOR(<) the interfaces here are simple so
 ! will not be fully redeclared
 ! implements the logical < comparison between NUMBER values
 ! body of procedure
 ENDFUNCTION num_lt_num

END SUBMODULE VPA_COMP_PROCS

This time the whole parent declarations are not repeated merely referenced from the parent declaration via
the interface name num_lt_num.

