
October 24, 2003 J3/03-264

Subject: Parameterized module facility for Fortran after 2003
From: Van Snyder

1 Problem1

Many algorithms can be applied to more than one type. Many algorithms that can only be applied to2

one type can be applied to more than one kind. It is tedious, expensive, and error prone — especially3

during maintenance — to develop algorithms that are identical except for type declarations to operate4

on different types or kinds.5

2 Proposed solution6

A generic programming facility for Fortran is proposed here. It is similar to an Ada generic package.7

Ada also provides for generic procedures, but if one has generic packages, generic procedures can be8

gotten by putting ordinary procedures inside of generic packages, so to keep this proposal simple, it does9

not include the equivalent of Ada generic procedures.10

A generic package can be used to collect together types, procedures and other entities that need to be11

instantiated in a consistent way. It may be that one doesn’t need all of the entities from an instance of12

it. It may be that one needs more than one instance of it in the same scope. In Ada, the with and use13

statements provide the necessary functionality to satisfy these desires.14

The USE statement in Fortran and its relation to its module have all of the necessary functionality.15

It is therefore proposed to implement a generic programming facility based on modules, by extending the16

syntax and semantics of MODULE and USE statements. No new statements or keywords are introduced.17

Extensions to the syntax of the interface block and type statement may be useful.18

The MODULE statement is extended to allow an access specification (for internal modules) and to allow19

for module parameters. The USE statement is extended to allow for instance parameters.20

A module that has parameters is a parameterized module. It is a template or pattern from which21

specific modules can be generated by substituting concrete entities for its parameters.22

It is desirable to allow parameterized modules within other scoping units, first because that may be the23

only place they’re needed, and second to allow instances to share entities. It would be unreasonable to24

require shared entities to be put into another module, made public, and accessed by use association.25

Once one has internal parameterized modules, it is possible but seems fatuous to prohibit internal nonpa-26

rameterized modules, including parameterized modules. Therefore declaration constructs are extended27

to include internal modules, either parameterized or not. It would not be unreasonable to prohibit interal28

modules to contain internal modules, just as we prohibit internal subprograms from containing internal29

subprograms.30

A module parameter can be an object of any type and kind, a type, a procedure, a generic identifier, or31

a module — including a parameterized module. The corresponding instance parameter can be an initial-32

ization expression, a type specification, a procedure name, a generic identifier, or a module, respectively.33

Each module parameter shall be declared. A statement of the form TYPE [[, module-type-param-attr34

] ::] module-param-name-list specifies that module parameters are types. The module-type-param-attr35

is of the form WITH (binding-name-list), which indicates that the specified generic or specific binding36

names are to be bound to the type. A statement of the form MODULE :: module-param-name-list37

specifies that a module parameter is a module.38

Analogously to how dummy procedures may be declared, a procedure module parameter may be declared39

using a PROCEDURE statement or an interface body.40

Each USE statement that has instance parameters creates a module that is a separate instance of a41

parameterized module, with instance parameters specified in the USE statement substituted for corre-42

sponding parameters of the specified module, and provides access by use association to entities of that43

instance. E.g. use BLAS(dp), only: DAXPY => AXPY creates an instance of BLAS with the instance44

parameter dp substituted for appearances of the corresponding module parameter, accesses an instance45

October 24, 2003 Page 1 of 7

October 24, 2003 J3/03-264

of AXPY by use association from that instance, and names it DAXPY in the instantiating scope. Instances1

are not created automatically to satisfy a need for an instance of an entity within a parameterized2

module.3

Instance parameters correspond with module parameters by position or by keyword. There are no4

optional instance parameters. To allow for instance parameters that are intrinsic types, the syntax5

for type reference is extended to allow TYPE(intrinsic-type). An instance parameter that is a generic6

specifier may be associated with a procedure module parameter. To see that this flexibility is necessary,7

see the end of the example in 4.4.8

The syntax of the USE statement is extended to give a name to an instance of a parameterized module,9

to allow accessing that instance by other USE statements. E.g. in use :: DPBLAS => BLAS(dp); use10

DPBLAS, only: DAXPY => AXPY the first USE statement creates the instance DPBLAS and the second11

accesses DPBLAS by use association. This is necessary if one has too many only names or too many12

renamings to fit onto a single statement.13

Each entity within an instance of a parameterized module is separate from the corresponding entity14

in a different instance: Neither the specification parts nor the procedures are shared between different15

instances, and corresponding type definitions in different instances define different types, even if the16

instance parameters are identical. The SAVE attribute does not mean that a variable is shared between17

instances. If instances need to share an entity, they can access it by host or use association. If a recursive18

subprogram is created by an instance of a parameterized module, a variable within it that has the SAVE19

attribute is shared between recursively invoked instances of the procedure defined by that instance of20

that subprogram, not between procedures defined by different instances of that subprogram.21

A parameterized module that is an internal module has access by host association to its containing scop-22

ing unit. An instance has access by host association to the containing scoping unit of its parameterized23

module’s definition, but does not have access by host association to the containing scoping unit where24

it is instantiated.25

An instance of a parameterized module shall not instantiate its parameterized module, either directly26

or indirectly. This includes prohibiting using a parameterized module as an instance parameter of itself27

if the corresponding module parameter is instantiated within the parameterized module. An internal28

module that is defined within a module shall not access its containing module by use association, either29

directly or indirectly.30

The name of an internal module may be accessed by use association. This does not access the internal31

module by use association, or cause instantiation. An internal module may be instantiated or accessed32

by use association if its name is accessible. So to access an internal module from a module different33

from the one where it is defined, two USE statements are necessary; the first accesses the name of the34

internal module, and the second accesses the internal module or instantiates it. E.g., use A, only: B;35

use B or use A, only: G; use G(myKind).36

Alternatively, we could provide that an internal module may be directly instantiated or accessed by37

use association by qualifying its name with the name of its containing module(s), e.g., use A%B pro-38

vides direct access by use association to the internal module B defined within the module A, while use39

A%G(myKind) instantiates G directly from A without separately accessing its name by use association.40

No entity within a parameterized module is accessible by use association.41

A USE statement that instantiates a parameterized module shall refer either to a global parameterized42

module or to an accessible internal parameterized module.43

Neither an internal module nor a parameterized module shall have submodules.44

If a procedure within a parameterized module has an operation, assignment, or input/output applied45

to objects of a type given by a module parameter, the operator, assignment or input/output shall be46

declared by using an interface block that is introduced by an interface-stmt of the form ABSTRACT47

INTERFACE generic-spec.48

October 24, 2003 Page 2 of 7

October 24, 2003 J3/03-264

3 BNF for syntax extensions1

The MODULE statement is extended:2

R1105 module-stmt is MODULE module-name [(module-param-name-list)]3

The USE statement is extended:4

R1109 use-stmt is module-reference5

or module-instantiation6

R1109 1
3 module-reference is USE [[, module-nature] ::] module-name [, rename-list]7

or USE [[, module-nature] ::] module-name ,8

ONLY : [only-list]9

R1109 2
3 module-instantiation is USE [:: [instance-name =>]] module-name10

(instance-param-list) [, rename-list]11

or USE [:: [instance-name =>]] module-name12

(instance-param-list) , ONLY : [only-list]13

The module-name in a USE statement might be the name of a global module, or an internal module14

that is defined in the same scope or accessed by host or use association.15

R301 instance-param is [module-param-name =>] instance-parameter16

R302 instance-parameter is designator17

or TYPE (derived-type-spec)18

or TYPE (intrinsic-type-spec)19

or procedure-name20

or generic-spec21

or module-name22

The declaration-construct is extended to provide for parameterized module instantiation, internal module23

definition, and declaration of module parameters:24

R207 declaration-construct is module-instantiation25

or module26

or derived-type-def27

or module-type-param-decl28

or GENERIC [::] module-param-name-list29

or MODULE :: module-param-name-list30

or TYPE [, module-type-param-attr [::]] module-param-name-list31

....32

C201 1
2 A module-param-name shall be the name of a parameter of the parameterized module in the33

scoping unit of which the declaration-construct appears.34

R207 1
2 module-type-param-attr is WITH (tbp-name-list)35

The INTERFACE statement is extended to provide for abstract declaration of generic interfaces:36

R1203 interface-stmt is [ABSTRACT] INTERFACE [generic-spec]37

4 Aleksandar’s example problems38

4.1 A type with a type-bound procedure and the correct kind39

module Euclidean (Kind)40

integer :: Kind41

42

type :: Euclidean_Point43

real(kind) :: Position(3)44

contains45

generic :: Translate => DoTranslate46

end type47

48

October 24, 2003 Page 3 of 7

October 24, 2003 J3/03-264

contains1

2

subroutine DoTranslate (Point, Translation)3

type (Euclidean_Point), intent(inout) :: Point4

type (Euclidean_Point), intent(in) :: Translation5

point%position = point%position + translation%position6

end subroutine DoTranslate7

8

end module Euclidean9

10

...11

parameter :: R_SP = kind(0.0e0), R_DP = kind(0.0d0)12

use euclidean(r_sp), only: Euclidean_Point_sp => euclidean_point13

use euclidean(r_dp), only: Euclidean_Point_dp => euclidean_point14

Notice that this does not use a parameterized type. Each time the Euclidean Point type is instantiated15

from the Euclidean module, it’s a new type, so it needs to be renamed if it’s instantiated twice in the16

same scoping unit. Using a parameterized type would not guarantee that a type-bound Translate17

procedure with the appropriate kind of dummy arguments is available, but would give the opportunity18

to create objects for which it was not available.19

We could use parameterized types here with an extension of the GENERIC statement in a type definition,20

wherein absence of the binding-name-list means “the generic-spec is the identifier of an interface body.”21

module :: Euclidean22

23

type :: Euclidean_Point(Kind)24

integer, kind :: Kind25

real(kind) :: Position(3)26

contains27

generic :: Translate28

end type29

30

module Translate_m (Kind)31

integer :: Kind32

33

interface Translate34

module procedure DoTranslate35

end interface36

37

subroutine DoTranslate (Point, Translation)38

type (euclidean_point(kind)), intent(inout) :: Point39

type (euclidean_point(kind)), intent(in) :: Translation40

point%position = point%position + translation%position41

end subroutine DoTranslate42

end module Translate_m43

44

end module Euclidean45

46

...47

parameter :: R_SP = kind(0.0e0), R_DP = kind(0.0d0)48

use euclidean, only: Euclidean_Point, Translate_m49

use Translate_m(r_sp)50

use Translate_m(r_dp)51

Here you would need to be careful to instantiate enough instances of Translate m to cover the kind52

October 24, 2003 Page 4 of 7

October 24, 2003 J3/03-264

parameters you’re going to use to create Euclidean Point objects. Each instantiation adds to the1

Translate generic interface body, so you would need to be careful not to instantiate Translate m more2

than once with the same instance parameter. This could get icky if you have several kind parameters,3

which on some platforms are different and on others are the same. E.g., suppose you defined R SP =4

selected real kind(7) and R DP = selected real kind(13) on a 64-bit machine. Then you’d have5

two instances of DoTranslate, with identical characteristics, in the same generic.6

If we allowed a USE statement inside of a type definition, one could do the following7

module :: Euclidean8

9

private10

11

module, private :: Translate_m (Kind)12

integer :: Kind13

subroutine DoTranslate (Point, Translation)14

type (euclidean_point(kind)), intent(inout) :: Point15

type (euclidean_point(kind)), intent(in) :: Translation16

point%position = point%position + translation%position17

end subroutine DoTranslate18

end module Translate_m19

20

type, public :: Euclidean_Point(Kind)21

integer, kind :: Kind22

real(kind) :: Position(3)23

contains24

use translate_m(kind) ! Creates a "kind" instance of "DoTranslate"25

procedure :: DoTranslate26

end type27

28

end module Euclidean29

30

...31

parameter :: R_SP = kind(0.0e0), R_DP = kind(0.0d0)32

use euclidean, only: Euclidean_Point33

type(euclidean_point(r_sp)) :: Point_SP34

type(euclidean_point(r_dp)) :: Point_DP35

This one is probably the most convenient one for users, but more work for a processor, because object36

declaration implies parameterized module instantiation. One might be tempted to wish in this case that37

the processor would cache instances of the module Translate m. That’s a step too far unless we provide38

something to instruct the processor that it’s what the user wants: How does the processor know that39

the user doesn’t want two instances (perhaps because it has a SAVE variable)?40

4.2 BLAS for real and complex41

module BLAS_1 (Type)42

abstract interface operator (+) ! assumed to exist for intrinsic types43

pure type(type) function ADD_ (X, Y)44

type(type), intent(in) :: X, Y ! Forward reference to declaration of "type"45

end function ADD_46

end interface47

type :: Type48

49

contains50

function ADD (X, Y) result (X_plus_Y)51

October 24, 2003 Page 5 of 7

October 24, 2003 J3/03-264

type(type), intent(in) :: X, Y1

type(type) :: X_plus_Y2

x_plus_y = x + y3

end function ADD4

end module BLAS_15

The interface for operator (+) could be gotten by instantiating a module that consists only of6

such definitions, say by use Numeric Operators(type), only: operator(+). It indicates that the7

operator must be gotten from somewhere when the module is instantiated. Since instances don’t access8

the environment of their instantiation by host association, the operator has to be bound to the type, with9

the specified interface. If a parameterized module has several parameters that are types, and declares a10

generic operation that involves several of them, the operation can be bound to any of the types, but not11

more than one (else the generic will be ambiguous).12

...13

use BLAS_1(real(kind(0.0d0))), only: Add_DPR => Add14

use BLAS_1(complex(kind(0.0d0))), only: Add_DPC => Add15

interface ADD16

module procedure Add_DPR, Add_DPC17

end interface18

In using this module it would be convenient to be able to put the USEs that instantiate Add DPR and19

Add DPC inside of the interface block:20

interface ADD21

use BLAS_1(real(kind(0.0d0))), only: Add_DPR => Add22

use BLAS_1(complex(kind(0.0d0))), only: Add_DPC => Add23

end interface24

4.3 Generic stack25

module Stacks (Type)26

type :: Type ! No requirements on this type27

28

type Stacks_t29

integer :: How_Many = 030

type(type), allocatable, private :: Storage(:)31

contains32

procedure :: Initialize, Pop33

end type Stacks_t34

35

contains36

37

subroutine Initialize (Stack, MaxSize)38

type(type), intent(out) :: Stack39

integer, intent(in) :: MaxSize40

allocate (stack%storage(maxSize))41

end subroutine Initialize42

...43

end module Stacks44

45

type :: MyType46

...47

end type MyType48

October 24, 2003 Page 6 of 7

October 24, 2003 J3/03-264

use Stacks(myType), MyStack_t => stacks_t, Initialize_myType => initialize1

type(myStack_t) :: MyStack2

call myStack % initialize (100)3

4.4 Quicksort4

module Quicksort_m (Type)5

abstract interface operator (<) ! Assumed to exist for intrinsic types6

pure logical function Less (X, Y)7

type(type), intent(in) :: X, Y ! Forward reference to declaration of "type"8

end function Less9

end interface10

type :: Type11

12

contains13

14

subroutine Quicksort (A)15

type (type), inout :: A(:)16

...17

if (A(i) < A(j)) then18

...19

end subroutine Quicksort20

end module Quicksort_m21

22

...23

use Quicksort_m(type(myType)), only: Quicksort24

The interface for operator (<) could be gotten by instantiating a module that consists only of such25

definitions, say by use Ordered Operators(type), only: operator(<).26

Alternatively, if < isn’t expected to be bound to the Type module parameter27

module Quicksort_m (Type, Less)28

type :: Type29

interface operator (<)30

pure logical function Less (X, Y)31

type(type), intent(in) :: X, Y32

end function Less33

end interface34

35

contains36

37

subroutine Quicksort (A)38

type (type), inout :: A(:)39

...40

if (A(i) < A(j)) then41

...42

end subroutine Quicksort43

end module Quicksort_m44

45

...46

use Quicksort_m(type(integer),operator(<)), only: Quicksort_int47

use Quicksort_m(type(myType), myLessFunc), only: Quicksort_myType48

October 24, 2003 Page 7 of 7

