
16 December 2003 J3/04-122

Subject: Physical or engineering units
From: Van Snyder

1 Number1

TBD2

2 Title3

Physical or engineering units4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide for numeric variables and named constants to have physical or engineering units such as length,10

mass, area, temperature. . . . “Compute” and check units for expressions and assignment at compile11

time. Verify that units for corresponding actual and dummy arguments are identical at compile time if12

an explicit interface is available. (A processor could provide for checking units for corresponding actual13

and dummy arguments at run time, which would be useful when procedures without explicit interface14

are used, but this should not be required by the standard.) Input and output units. Convert numeric15

values during formatted, namelist or list-directed input and output if the item has units, a conversion16

expression is defined, and unit input/output is requested.17

It may be possible to apply units to derived types, which would be useful for such user-defined types18

as intervals or extended-precision numbers. This proposal does not include a provision for doing so. It19

does not appear to be sensible to apply units to objects of character or logical type.20

6 Rationale21

Incorrect use of physical units is the second-most-common error in scientific or engineering software,22

coming immediately after mismatching the types of actual and dummy arguments. Explicit interfaces23

largely solve the second problem, but do nothing directly for the first. (One can use derived types24

to provide a physical units system, at the expense of redefining assignment and all of the necessary25

operations and intrinsic functions.) A particularly expensive (≈ $3× 108) and embarrassing example of26

an units mistake was the the cause of the loss of the Mars Climate Orbiter. The loss resulted because the27

NASA contract required small forces, e.g. from attitude-control maneuvers, to be reported in Newton-28

Seconds, but Lockheed nonetheless reported them in Pound-Seconds. (This was quite inscrutable, as29

Lockheed had had contracts with JPL for over thirty years, and they’ve always specified SI units.)30

7 Estimated Impact31

In terms of changes to the standard, this is a substantial project, requiring changes in Sections 4, 5,32

6, 8, 10, and 13. Determining the units of an expression, checking units of subexpressions, and doing33

conversions automatically, is not tremendously difficult — I’ve already done it in an expression evaluator34

for an input routine.35

16 December 2003 Page 1 of 4

16 December 2003 J3/04-122

8 Detailed Specification1

Define a new UNIT attribute or type parameter (call it what you will) that can be specified for any2

numeric variable or named constant. Literal constants are unitless except in one case explained below.3

Four varieties of units are defined: Atomic units are not defined in terms of any other units. Composite4

units are defined in terms of atomic units or other composite units. Value-converting units convert values5

according to specified linear conversions. Abstract units are provided to specify the relation between6

units for dummy arguments and function results. They can be either atomic or composite, but not7

value-converting. Non-abstract units participate in generic resolution; abstract units do not.8

Multiplication and division operations on units are defined. Exponentiation by an unitless integer9

constant is defined to be equivalent to repeated multiplication or division.10

Each unit declaration creates a unit coercion function having the same name as the unit, that takes an11

argument with any unit, and coerces it to have the unit specified by the name of the function. If the12

unit of the argument and the result are related by a linear conversion expression, value conversion is13

also implied. There is an intrinsic UNITLESS coercion function.14

Quantities can be added, subtracted, assigned, or compared by relational operations only if they have15

equivalent units. Atomic and value-converting units are equivalent by name. Composite units are16

equivalent by structure. If a dummy argument has a unit that is not abstract, the associated actual17

argument shall have an equivalent unit.18

Abstract units allow enforcing a particular relation between the units, without requiring particular units.19

For example, the SQRT intrinsic function result has abstract units A, and its argument has abstract20

units A*A. If a dummy argument has an abstract unit, the associated actual argument can have any unit,21

but if several dummy arguments have abstract units, the units of their corresponding actual arguments22

shall be related in the same way as the units of the dummy arguments. If a function result has an23

abstract unit, and that unit is related to units of dummy arguments, the unit of the result of invoking24

the function is related to the actual arguments in the same way.25

There is an intrinsic RADIAN unit, and a parallel set of generic intrinsic trigonometric functions that26

take RADIAN arguments and produce unitless results. All of the remaining intrinsic procedures have27

arguments with abstract units and results that are unitless (e.g. SELECTED INT KIND) or have28

the same units as their argument (e.g. TINY). Because function results do not participate in generic29

resolution, it is not possible to have a parallel set of generic intrinsic inverse trigonometric functions that30

return RADIAN results. It may be useful to provide an intrinsic module that has some public units31

and procedures, e.g. units TICK and SECOND and a SYSTEM CLOCK module procedure that has32

arguments with units TICK, TICK/SECOND and SECOND.33

When quantities are added or subtracted, the units of the result are the same as the units of the operands.34

When quantities are multiplied or divided, the units of the result are the units that result from applying35

the operation to the operands’ units. Multiplication or division by an unitless operand produces a result36

having the same units as the other operand. Exponentiation by an unitless integer constant is defined37

to be equivalent to multiplication or division. In an exponentiation operation, the exponent shall be38

unitless. For intrinsic assignment, the units shall be the same.39

There are two forms of the UNIT statement. One without (unit-name) declares and defines units.40

Units are declared to be atomic by appearing without a definition. Units are declared to be composite41

or value-converting by having a defining expression that uses literal constants, unitless named constants,42

multiplication, division, exponentiation by an unitless integer, previously-declared unit names, and, in43

the case of value-converting units, addition or subtraction. Units are declared to be abstract by having44

the ABSTRACT attribute in their declarations. A nonatomic abstract unit shall be defined in terms of45

abstract units.46

Value-converting units are defined using linear expressions equivalent in form to U = [a] U ′ [± b], where47

U is thereby declared to be an unit name, U ′ is required to be a previously declared nonabstract unit48

name, and a �= 0 and b are unitless numeric initialization expressions. A value-converting unit is defined49

even if a is absent or one and b is absent or zero. In these expressions, a is considered to have units50

U/U ′ and b is considered to have units U , but we can’t say that since U isn’t defined yet. This is the51

16 December 2003 Page 2 of 4

16 December 2003 J3/04-122

only case where literal constants are not unitless. This explicitly defines a conversion function from U1

to U ′ and implicitly defines its inverse (always possible because a is required to be nonzero). Although2

U ′ need not be atomic, if it is atomic it remains atomic even though an inverse conversion is defined.3

Value-converting functions are generic, since there may be several implicitly-defined inverse conversions.4

Neither U nor U ′ shall be abstract.5

Value conversions are transitive. Since each unit can only be declared once, and cannot be referenced6

before being declared, an explicitly circular dependence of conversions is impossible. There will usually7

be an atomic unit involved in one of the value conversions, but a composite unit is possible. There8

are examples of transitive conversions, multiple implicit conversions, and conversions that depend on9

nonatomic units below.10

Value conversion is implied during input or explicit units conversion using the units conversion function11

implied by the unit declaration or its inverse, provided the argument or input value is related to the12

result or input list item by a sequence of explicit or implicit conversions. Value conversion does not13

occur during intrinsic assignment (this could be an extension), argument association or output. When14

conversion is applied, all constants within a and b are converted to the kind of the argument expression15

or input list item. This specification could interact with the proposal to include function result types in16

the criteria for generic resolution.17

The Mars Climate Orbiter crashed because quantities with the wrong units were written by one pro-
gram, and assumed to have the correct units by another program. Automatic units checking and value
conversion would have let Lockheed use whatever units they wanted to use, so long as the JPL software
had the unit name, and the appropriate conversion, available. If JPL software insisted on units, and
the Lockheed data were unitless, or used units that JPL software did not specify, the error would have
been detected.18

In all other unit-defining expressions, the only constants allowed are 1 and 1.0, or named constants19

having those values.20

Variables or named constants are declared to have units by specifying UNIT(unit-name) in their decla-21

rations, *unit-name after their names in declaration statements, or by an UNIT(unit-name) statement.22

UNIT(unit-name) is allowed in the prefix of a function-stmt .23

There is an optional U[w] suffix to numeric format descriptors, that causes units to be output by24

write statements, or input and checked by read statements. The text of the unit that is output, or25

checked during input, is the same as the unit name, except that case of letters is not significant. There26

is a specification in OPEN, READ and WRITE statements that controls whether units for numeric27

quantities that have units are to be output (checked) by namelist or list-directed output (input). There28

is a specification for the INQUIRE statement to inquire whether this mode is set by an OPEN statement29

for a connection. A single specification, rather than separate ones for namelist and list-directed transfers,30

is adequate.31

Some thought and debate will be necessary to decide what to do about input and output of arrays that32

have units. Should the value in the input for every element be required to specify its units, or is it33

enough that at least one does? If one is enough should it be specified to be first (or last)? Should units34

be provided for every element of output, or is one enough? There is not a problem for array constructors,35

since they can be wrapped with an units coercion or conversion function.36

8.1 Examples37

8.1.1 Atomic and composite units38

UNIT :: INCH, SECOND39

UNIT :: CM, INCH_TO_CM = CM / INCH40

REAL, PARAMETER, UNIT(INCH_TO_CM) :: CONVERT = INCH_TO_CM(2.54)41

UNIT :: SQINCH = INCH * INCH ! or INCH ** 242

UNIT :: IPS = INCH / SECOND, Hz = 1 / SECOND ! or SECOND ** (-1)43

REAL, UNIT(SQINCH) :: A44

REAL, UNIT(Hz) :: F45

16 December 2003 Page 3 of 4

16 December 2003 J3/04-122

REAL, UNIT(INCH) :: L, L2, C*CM1

REAL, UNIT(SECOND) :: T2

REAL :: V3

UNIT(IPS) :: V4

5

V = A + L ! INVALID -- SQINCH cannot be added to INCH,6

! and neither one can be assigned to IPS7

V = IPS(A + SQINCH(L)) ! VALID -- I’m screwing this up intentionally8

V = (A / L + L2) / T ! VALID -- IPS is compatible with INCH / SECOND9

A = L * L2 ! VALID -- SQINCH is compatible with INCH * INCH10

F = V / L ! VALID -- units of LHS and RHS are both 1/SECOND11

C = CONVERT * L ! VALID -- CM / INCH * INCH = CM12

L = SQRT(A) * 5.0e-3 ! VALID -- exercise for reader13

8.1.2 Abstract units14

INTERFACE15

REAL UNIT(UR) FUNCTION CBRT (A)16

UNIT, ABSTRACT :: UR, UA = UR**317

REAL, UNIT(UA) :: A18

END FUNCTION CBRT19

END INTERFACE20

8.1.3 Value-converting units21

UNIT :: MHz = 1.0e6 * Hz, GHz = 1000 * MHz, KHz = 0.001 * MHz22

UNIT :: F, C = (F - 32) * 5.0 / 9.0 ! Also defines (atomic) F = 1.8 * C + 32.023

UNIT :: DEGREES = 45.0 * RADIAN / ATAN(1.0)24

REAL, UNIT(Radian) :: Angle = Degrees(45) ! = Radian(0.785398163)25

REAL, UNIT(MHz) :: Frq = MHz(3310.0)26

REAL, UNIT(C) :: Temp = F(212.0) ! = C(100.0)27

...28

CHARACTER(32) :: LINE29

WRITE(LINE,*,UNITS="yes") GHz(Frq), F(Temp), Degrees(Angle)30

READ(LINE,*,UNITS="yes") Frq, Temp, Angle31

Execution of the WRITE statement causes LINE to have the value "3.31 GHz 212.0 F 45.0 Degrees"32

(approximately). Execution of the READ statement causes the variables Frq, Temp and Angle to get their33

original values (approximately).34

Notice that MHz(3.31), C(212) and Radian(45) have values 3.31, 212 and 45 respectively, with units35

MHz, C and Radian respectively, not 3310.0, 100.0 and 0.785398163 respectively, since generic resolution36

selects the simple unit-coercion functions, not the conversion ones, for unitless arguments.37

Input of the form "3.3021148036e-10 Second 212 F 45 Degrees" is not permitted, since the38

declaration of Hz does not define a value-converting unit.39

If we have40

REAL(kind(0.0d0)), UNIT(Radian) :: AngleD41

then in Degrees(AngleD) the 1.0 that is the argument of ATAN in the definition of the Degrees42

conversion function is converted to 1.0d0.43

9 History44

16 December 2003 Page 4 of 4

