
9 December 2003 J3/04-124

Subject: Extensions to C interoperability for optional and assumed-shape dummy arguments
From: Van Snyder
Reference: 03-258r1, section 2.16.1

Number1

TBD2

Title3

Extensions to C interoperability to support optional arguments, assumed-shape arguments, and “fat”4

pointers.5

Submitted By6

J37

Status8

For consideration.9

Basic Functionality10

Standardize the interfaces for C functions to create and interpret descriptors for assumed-shape dummy11

arguments, optional arguments, and pointers that include the same extent and stride information as12

Fortran pointers. Standardize the function names and names of any types necessary for those functions.13

None of these facilities necessarily apply to noninteroperable procedures. Processors can use different de-14

scriptors for optional and assumed-shape arguments for interoperable and noninteroperable procedures.15

Fortran pointers and assumed-shape arguments are intentionally alike. It is reasonable to require that16

an interoperable descriptor for Fortran-like pointers and an interoperable descriptor for assumed-shape17

dummy arguments be the same.18

Rationale19

The usability of Fortran procedures by C functions is reduced because C functions cannot create descrip-20

tors for actual arguments to be associated with optional dummy arguments or assumed-shape dummy21

arguments, or descriptors having the same sort of extent and stride information as Fortran pointers.22

If an assumed-shape dummy argument of a Fortran procedure is used as the actual argument of a C23

function, and the array is not contiguous, a copy will be required because there is no way specified by24

the standard for a C function to interpret a descriptor for an assumed-shape argument.25

If n optional dummy arguments of a Fortran procedure are to be used as actual arguments for a C26

function, 2n versions of that C function and a test with 2n branches will be needed to use the functions.27

If a Fortran pointer with rank greater than one needs to be an actual argument for a C function, it needs28

to be passed through a Fortran interface in which it is associated with an assumed-size or explicit-shape29

dummy argument, thereby causing a copy if the array is not contiguous.30

Estimated Impact31

A few subclauses in Section 15. Very little interaction with other portions of the standard, except32

perhaps to cross off some constraints.33

9 December 2003 Page 1 of 4



9 December 2003 J3/04-124

Detailed Specification1

A C function can use functions, structs and typedefs described in this subclause to examine or create2

descriptors for optional or assumed-shape dummy arguments for interoperable procedures. Processors3

shall provide the header files described here, containing at least the functions, structs and typedefs4

described here. There is no implication that the procedures described in this section can be used to5

examine or create descriptors for optional or assumed-shape arguments for noninteroperable procedures.6

Processors may or may not use the same form of descriptors for interoperable and noninteroperable7

procedures. Procedures are provided to convert between Fortran pointers and objects of a type that8

interoperates with the descriptors for assumed-shape arrays described here.9

Drafts of subclauses describing the C functions, structs and typedefs follow. An attempt has been made10

to mimic the format of the 1999 C standard. They will almost certainly need to be polished; substantial11

revision of the approach may be necessary or desirable. This is merely an illustration of concept.12

Optional arguments13

The header <f optional.h> declares two functions and a type.14

The type is15

struct f optional16

which may contain any members the processor finds necessary.17

The f setoptional function18

Synopsis19

#include <f_optional.h>20

struct f_optional *f_setoptional(void *arg, _Bool present);21

Description22

The f setoptional function creates a descriptor that may be associated as an actual argument with23

an optional dummy argument of an interoperable Fortran procedure. It represents a present argument24

if present is true and an absent argument otherwise. The arg argument shall not be NULL if present25

is true.26

The f getoptional function27

Synopsis28

#include <f_optional.h>29

_Bool f_getoptional(struct f_optional *arg);30

Description31

The result of the f getoptional function is true if arg represents a present optional argument, and32

false if arg represents an absent optional argument.33

Assumed-shape arguments34

The header <f assumed shape.h> declares three functions, a typedef, and two types.35

The typedef is36

f shape t37

which denotes a standard integer type.38

The types are39

struct f assumed shape40

which may contain any members the processor finds necessary. A pointer to an f assumed shape struct41

may be used as an actual argument associated with an assumed-shape dummy argument of an interop-42

erable Fortran procedure, or as the formal parameter of a C function associated with an array actual43

argument declared in an interoperable Fortran interface.44

9 December 2003 Page 2 of 4



9 December 2003 J3/04-124

struct f extent stride1

which contains members that represent the extent and stride of one dimension of an assumed-shape2

array. The structure shall contain at least the members3

f_shape_t extent; // The extent of the dimension4

f_shape_t stride; /* The stride between consecutive elements in the5

dimension, in units of the array element */6

The f set extent stride function7

Synopsis8

#include <f_assumed_shape.h>9

struct f_extent_stride *f_set_extent_stride(f_shape_t extent, f_shape_t stride);10

Description11

The f set extent stride function combines the extent and stride for one dimension of an assumed-12

shape array. The result may be used as an actual parameter for the f create assumed desc function.13

The f create assumed desc function14

Synopsis15

#include <f_assumed_shape.h>16

struct f_assumed_shape *f_create_assumed_desc(void *array,17

f_extent_stride dim, ... );18

Description19

The f create assumed desc function creates a descriptor for an assumed-shape array. The result may20

be used as an actual argument associated with an assumed-shape dummy argument of an interoperable21

Fortran procedure.22

The f get array ptr function23

Synopsis24

#include <f_assumed_shape.h>25

void *f_get_array_ptr(f_assumed_shape *desc);26

Description27

The f get array ptr function returns the address of the first element of an array described by the desc28

parameter.29

The f get extent function30

Synopsis31

#include <f_assumed_shape.h>32

void *f_get_extent(f_assumed_shape *desc, f_shape_t dim);33

Description34

The f get extent function returns the extent of the dimension given by the dim parameter of an array35

described by the desc parameter.36

The f get stride function37

Synopsis38

#include <f_assumed_shape.h>39

void *f_get_stride(f_assumed_shape *desc, f_shape_t dim);40

9 December 2003 Page 3 of 4



9 December 2003 J3/04-124

Description1

The f get stride function returns the distance between consecutive elements in the dimension given2

by the dim parameter of an array described by the desc parameter. The units of the result are the size3

of an array element.4

Interoperable type having functionality of a Fortran pointer5

Define a derived type in ISO C BINDING, with private components, that interoperates with the C struct6

f assumed shape.7

Define procedures that convert Fortran pointers to objects of that type, and vice versa.8

History9

9 December 2003 Page 4 of 4


