
22 December 2003 J3/04-140

Subject: Named subranges of integers
From: Van Snyder
Reference: 03-258r1, section 1.3.1

Number1

TBD2

Title3

Named subranges of integers4

Submitted By5

J36

Status7

For consideration.8

Basic Functionality9

Provide named subranges of integers, with each one defining a different kind.10

Rationale11

There have been numerous requests for integers with explicit and not necessarily symmetrical range,12

rather than symmetrical range specified by the number of base-ten digits. There have been numerous13

requests for unsigned integers. There have been numerous requests for a bit data type. Subranges of14

integers can provide the effect of all of these. In addition, if array bounds can be specified by reference15

to subranges, and a subscript in a reference is of that kind, and the subscript gets its value in a DO16

statement with do-control based on reference to the subrange, subscript bounds checking has no run-17

time cost. Even if the subscript gets its value in an ordinary assignment, bounds checking is replaced18

by checking the value’s range during assignment. If the same subscript is used for several references,19

perhaps to several arrays, the cost of array bounds checking is reduced.20

Estimated Impact21

If subranges are defined so as to create new kinds, this is a modest project.22

If there is a problem with defining subranges to be kinds — perhaps because two largest-size integers23

are needed to define the set of subranges, and the result of the KIND intrinsic might therefore be24

problematical — then subranges should work as much like kinds as possible. This makes it a larger (but25

not tremendously larger) project, because everywhere we say ”type, kind and rank” we’ll need to say26

”type, kind, rank, and (if an integer) subrange.” If we go in this direction, it would be a good excuse to27

develop terms for ”type and kind or subrange” and ”type, kind or subrange, and rank.”28

Detailed Specification29

Provide a means to define named subranges of integers. Each subrange name defines an unique kind,30

or a quality that behaves like “kind,” even if it is defined by reference to the same subrange as another31

subrange name, or its subrange is the same as the range of a kind of integer defined by the processor.32

Subrange names can be used as kind type parameters in the declaration of integer entities, or in the33

intrinsic functions that need a kind parameter. Mixed-subrange arithmetic, assignment, and comparison34

are allowed, just like mixed-kind arithmetic, assignment, and comparison are allowed. Integer entities35

declared by reference to subrange names can also be used for mixed-type arithmetic, assignment and36

22 December 2003 Page 1 of 2

22 December 2003 J3/04-140

comparison. Mixed-subrange argument association is not permitted, just as mixed-kind argument as-1

sociation is not permitted. Integer entities of a subrange shall have values within the subrange. Array2

bounds may be specified by reference to a subrange — ideally by reference directly to the subrange3

name, rather than indirectly by using TINY and HUGE applied to an object of the subrange.4

Here are some examples of possible syntax.5

To define a subrange:6

SUBRANGE :: subrange-name (low-bound-expr : high-bound-expr)7

To declare an integer variable, named constant or function result:8

INTEGER ([KIND =] subrange-name) :: integer-entity-decl9

or10

INTEGER (SUBRANGE = subrange-name) :: integer-entity-decl11

In the latter case, even though a term different from KIND is used, integers having different subrange12

names are considered to have different kinds, including kinds different from integers declared using the13

KIND keyword.14

Some interesting subranges:15

SUBRANGE :: BIT(0:1), BYTE(0:255), UCHAR(0:255), UNSIGNED INT(0:2**16-1)16

! BYTE and UCHAR are different subranges.17

Using a subrange to get free bounds checking:18

SUBRANGE :: MyRange (-6 : 23)19

REAL :: Array (myRange)20

INTEGER (myRange) :: Sub21

DO sub = tiny(sub), huge(sub)22

array(sub) = func(sub)23

END DO24

History25

22 December 2003 Page 2 of 2

