
13 January 2004 J3/04-174

Subject: Modules need initialization parts
From: Van Snyder
Reference: 97-114r2, section 24 (pages 35-36).

Number1

TBD2

Title3

Modules need initialization parts.4

Submitted By5

J36

Status7

For consideration.8

Basic Functionality9

Provide for an initialization-part that consists of an execution-part and perhaps some more syntax,10

somewhere in a module, that is specified to be executed exactly once before any procedure within the11

module is executed, or before any part (including an initialization part) of a program unit that accesses12

it by use association is executed.13

Rationale14

There are three reasons to do this: convenience, clarity and safety. Convenient because the initialization15

gets done without user code needing to invoke it, and without the initialization part needing to have an16

explicit “first time flag” to prevent executing it twice. Clear because it puts initialization in a consistent17

place, specified by the standard. Safe because it guarantees the initialization gets done without needing18

to depend on scoping units that access the module to invoke the initialization.19

Estimated Impact20

Minor.21

Detailed Specification22

Provide for an initialization-part that consists of an execution-part and perhaps some more syntax,23

somewhere in a module, that is specified to be executed exactly once before any procedure within the24

module is executed, or before any part (including an initialization part) of a program unit that accesses25

it by use association is executed.26

One syntax to do this is to add [ execution-part ] in R1104, giving27

R1104 module is module-stmt28

[ specification-part ]29

[ execution-part ]30

[ module-subprogram-part ]31

end-module-stmt32

This is the way that Ada and Modula-2 work, and the way a Fortran main program works (with module-33

subprogram-part replaced by internal-subprogram-part , which has identical syntax).34

No matter what syntax is used, it will be necessary to add a requirement that the initialization part35

shall be executed no more than once before any procedure within the module is executed, or before any36

13 January 2004 Page 1 of 2



13 January 2004 J3/04-174

part (including an initialization part) of a program unit that accesses it by use association is executed.1

Thus if A uses B the initialization part for B is executed before the one for A, which is executed before2

(perhaps long before) any procedure in A. It can be processor dependent whether an initialization part3

is not executed if no execution-part in a scoping unit that accesses the module is executed.4

“Exactly once” is preferable to executing it again if the module goes “out of scope” and comes back, or5

to leaving this up to the processor. It’s easier to describe, probably easier to implement, and consistent6

with SAVE.7

Ada and Modula-2 both have initialization parts for their equivalents of Fortran’s modules. Since they8

are both widely implemented, it’s clear it’s possible to do this. Surely Fortran processor developers are9

at least as clever as Modula-2 and Ada processor developers!10

Here is a possible implementation. The main program, each external procedure, and each initialization11

part have, in effect (but maybe not in the details of implementation):12

logical, save :: FIRST = .TRUE.13

if ( first ) then14

first = .false.15

call initializer_for_first_accessed_module16

call initializer_for_second_accessed_module17

....18

! In a module, execute the initialization part’s execution part.19

....20

end if21

Each interoperable module procedure with a binding label has:22

logical, save :: FIRST = .TRUE.23

if ( first ) then24

first = .false.25

call initializer_for_the_module26

end if27

In some cases this could be done more efficiently by putting a GOTO instruction to the initialization28

part into the “data bank” of each module, which instruction is changed to a RETURN instruction by29

the initialization part, and similarly in each external procedure and interoperable module procedure30

that has a binding label. This isn’t as efficient as the ETH-Zürich method described below, but it’s not31

terribly inefficient, either.32

The ETH-Zürich Modula-2 processor determines an order to execute the initialization parts by doing a33

depth-first traversal of the dependency DAG. It inserts a CALL to the first initialization part before the34

first executable statement of the main program. At the end of each initialization part but the last one35

it inserts a GOTO the next one in the list. At the end of the last one, it inserts a RETURN. There are36

no other calls or “first time” flags. This method may need cooperation from the linker or an auxiliary37

processor.38

Different implementations could do it different ways; the standard should not specify how it’s done, but39

an example in Annex C may be useful.40

No matter how initialization is done, the standard should specify the name of a C function that the41

processor provides, and that can be invoked to do the initialization in the event the main program is42

not a Fortran main program unit. This is necessary for the ETH-Zürich method, and could be empty43

for the other two methods described above.44

History45

13 January 2004 Page 2 of 2


