
14 May 2004 J3/04-324

Subject: Edits to implement TR 19767
From: Van Snyder

1 Introduction1

The following editorial changes, if implemented, would provide the facilities described in TR 19767.2

Descriptions of how and where to place the new material are enclosed between square brackets within3

the body of the text. Page and line numbers in the margin refer to 04-007. If there is any conflict4

between the instructions in the body of the text and the page and line numbers in the margin, the5

instructions in the body take precedence.6

2 Edits7

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a8

page and line number or line number range implies all of the indicated text is to be replaced by associated9

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after10

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.11

[After the third right-hand-side of syntax rule R202 insert:] 9:12+12

or submodule13

[After syntax rule R1104 add the following syntax rule. This is a quotation of the “real” syntax rule in 9:34+14

subclause 11.2.2.]15

R1115a submodule is submodule-stmt16

[specification-part]17

[module-subprogram-part]18

end-submodule-stmt19

[Add another alternative to R1108:] 10:32+20

or separate-module-subprogram21

[In the second line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.] 11:4122

[In the fourth line of the first paragraph of subclause 2.2 insert a new sentence:] 11:4323

A submodule is an extension of a module; it may contain the definitions of procedures declared in a24

module or another submodule.25

[In the sixth line of the first paragraph of subclause 2.2 insert “, a submodule” after “module”.] 11:4526

[In the penultimate line of the first paragraph of subclause 2.2 insert “or submodule” after “module”.] 11:4727

[In the second sentence of 2.2.3.2, insert “or submodule” between “module” and “containing”.] 12:2828

[Insert a new subclause:] 13:17+29

2.2.5 Submodule30

A submodule is a program unit that extends a module or another submodule. It may provide definitions31

(12.5) for procedures whose interfaces are declared (12.3.2.1) in an ancestor module or submodule. It may32

also contain declarations and definitions of other entities, which are accessible in descendant submodules.33

An entity declared in a submodule is not accessible by use association unless it is a module procedure34

whose interface is declared in the ancestor module. Submodules are further described in Section 11.35

NOTE 2.2 1
2

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by
host association.

[In the second line of the first row of Table 2.1 insert “, SUBMODULE” after “MODULE”.] 1436

14 May 2004 Page 1 of 10

14 May 2004 J3/04-324

[Change the heading of the third column of Table 2.2 from “Module” to “Module or Submodule”.] 141

[In the second footnote to Table 2.2 insert “or submodule” after “module” and change “the module” to 142

“it”.]3

[In the first line of 2.3.3, insert “, end-sep-subprogram-stmt” after “end-subroutine-stmt”, and insert “, 14:2,4,64

end-submodule-stmt ,” after “end-module-stmt”. In the third line of subclause 2.3.3, replace “and end-5

subroutine-stmt” by “end-subroutine-stmt , and end-sep-subprogram-stmt”. In the fifth line of subclause6

2.3.3, replace “or end-subroutine-stmt” by “, end-subroutine-stmt , or end-sep-subprogram-stmt”.]7

[In the last line of 2.3.3 insert “, end-submodule-stmt ,” after “end-module-stmt”.] 15:28

[In the first line of the second paragraph of 2.4.3.1.1 insert “, submodule” after “module”.] 17:49

[At the end of 3.3.1, immediately before 3.3.1.1, add “END PROCEDURE” and “END SUBMODULE” 2810

into the list of adjacent keywords where blanks are optional, in alphabetical order.]11

[In the second line of the third paragraph of 4.5.1.1 after “definition” insert “, and within its descendant 46:1012

submodules”.]13

[In the last line of Note 4.18, after “defined” add “, and within its descendant submodules”.] 4614

[In the last line of the fourth paragraph of 4.5.3.6, after “definition”, add “, and within its descendant 55:1015

submodules”.]16

[In the last line of Note 4.40, after “module” add “, and within its descendant submodules”.] 5517

[In the last line of Note 4.41, after “definition” add “, and within its descendant submodules”.] 5618

[In the last line of the paragraph before Note 4.44, after “definition” insert “, and within its descendant 58:819

submodules”.]20

[In the third line of the second paragraph of 4.5.5.2 insert “, or submodule” after “module”.] 59:2321

[In the fourth line of the second paragraph of 4.5.5.2 insert “, or accessing the submodule” after “mod- 59:2422

ule”.]23

[In the second paragraph of Note 4.48, insert “or submodule” after the first “module” and insert “or 6024

accessing the submodule” after the second “module”].25

[In the first line of the second paragraph of 5.1.2.12 after “attribute” insert “, or within any of its 84:326

descendant submodules”.]27

[In the first and third lines of the second paragraph of 5.1.2.13 insert “or submodule” after “module” 84:14,1628

twice.]29

[In the third line of the penultimate paragraph of 6.3.1.1 replace “or a subobject thereof” by “or sub- 113:1830

module, or a subobject thereof,”.]31

[In the first two lines of the first paragraph after Note 6.23 insert “or submodule” after “module” twice.] 115:9-1032

[In the second line of the first paragraph of Section 11 insert “, a submodule” after “module”.] 249:333

[In the first line of the second paragraph of Section 11 insert “, submodules” after “modules”.] 249:434

[Add another alternative to R1108] 250:17+35

or separate-module-subprogram36

[Within the first paragraph of 11.2.1, at its end, insert the following sentence:] 251:837

A submodule shall not reference its ancestor module by use association, either directly or indirectly.38

[Then insert the following note:]39

14 May 2004 Page 2 of 10

14 May 2004 J3/04-324

NOTE 11.6 1
3

It is possible for submodules with different ancestor modules to access each others’ ancestor modules
by use association.

[After constraint C1110 insert an additional constraint:] 251:34+1

C1110a (R1109) If the USE statement appears within a submodule, module-name shall not be the name2

of the ancestor module of that submodule (11.2.2).3

[Insert a new subclause immediately before 11.3:] 253:2-4

11.2.2 Submodules5

A submodule is a program unit that extends a module or another submodule. The program unit6

that it extends is its parent; its parent is specified by the parent-identifier in the submodule-stmt . A7

submodule is a child of its parent. An ancestor of a submodule is its parent or an ancestor of its parent.8

A descendant of a module or submodule is one of its children or a descendant of one of its children.9

The submodule identifier consists of the ancestor module name together with the submodule name.10

NOTE 11.6 2
3

A module and its submodules stand in a tree-like relationship one to another, with the module at
the root. Therefore, a submodule has exactly one ancestor module and may optionally have one
or more ancestor submodules.

A submodule accesses the scoping unit of its parent by host association.11

A submodule may provide implementations for module procedures, each of which is declared by a module12

procedure interface body (12.3.2.1) within that submodule or one of its ancestors, and declarations and13

definitions of other entities that are accessible by host association in descendant submodules.14

R1115a submodule is submodule-stmt15

[specification-part]16

[module-subprogram-part]17

end-submodule-stmt18

R1115b submodule-stmt is SUBMODULE (parent-identifier) submodule-name19

R1115c parent-identifier is ancestor-module-name [: parent-submodule-name]20

R1115d end-submodule-stmt is END [SUBMODULE [submodule-name]]21

C1114a (R1115a) An automatic object shall not appear in the specification-part of a submodule.22

C1114b (R1115a) A submodule specification-part shall not contain a format-stmt or a stmt-function-stmt.23

C1114c (R1115a) If an object of a type for which component-initialization is specified (R444) is declared24

in the specification-part of a submodule and does not have the ALLOCATABLE or POINTER25

attribute, the object shall have the SAVE attribute.26

C1114d (R1115c) The ancestor-module-name shall be the name of a nonintrinsic module; the parent-27

submodule-name shall be the name of a descendant of that module.28

C1114e (R1115d) If a submodule-name is specified in the end-submodule-stmt , it shall be identical to29

the submodule-name specified in the submodule-stmt .30

[In the last line of the first paragraph of 12.3 after “units” add “, except that for a separate module 257:1331

procedure body (12.5.2.4), the dummy argument names, binding label, and whether it is recursive shall32

be the same as in its corresponding module procedure interface body (12.3.2.1)”.]33

[In C1210 insert “that is not a module procedure interface body” after “interface-body”.] 259:2034

[After the third paragraph after constraint C1211 insert the following paragraphs and constraints.] 259:30+35

A module procedure interface body is an interface body in which the prefix of the initial function-36

stmt or subroutine-stmt includes MODULE. It declares the module procedure interface for a separate37

14 May 2004 Page 3 of 10

14 May 2004 J3/04-324

module procedure (12.5.2.4). A separate module procedure is accessible by use association if and only1

if its interface body is declared in the specification part of a module and its name has the PUBLIC2

attribute. If a corresponding (12.5.2.4) separate module procedure is not defined, the interface may be3

used to specify an explicit specific interface but the procedure shall not be used in any way.4

C1211a (R1205) A scoping unit in which a module procedure interface body is declared shall be a module5

or submodule.6

C1212b (R1205) A module procedure interface body shall not appear in an abstract interface block.7

[Add another alternative to R1228:] 280:3+8

or MODULE9

[Add constraints after C1242:] 280:7+10

C1242a (R1227) MODULE shall appear only within the function-stmt or subroutine-stmt of a module11

subprogram or of an interface body that is declared in the scoping unit of a module or submodule.12

C1242b (R1227) If MODULE appears within the prefix in a module subprogram, a module procedure13

interface having the same name as the subprogram shall be declared in the module or submodule14

in which the subprogram is defined, or shall be declared in an ancestor of that program unit15

and be accessible by host association from that ancestor.16

C1242c (R1227) If MODULE appears within the prefix in a module subprogram, the subprogram shall17

specify the same characteristics and dummy argument names as its corresponding (12.5.2.4)18

module procedure interface body.19

C1242d (R1227) If MODULE appears within the prefix in a module subprogram and a binding label20

is specified, it shall be the same as the binding label specified in the corresponding module21

procedure interface body.22

C1242e (R1227) If MODULE appears within the prefix in a module subprogram, RECURSIVE shall23

appear if and only if RECURSIVE appears in the prefix in the corresponding module procedure24

interface body.25

[Insert the following new subclause before the existing subclause 12.5.2.4 and renumber succeeding 283:1-26

subclauses appropriately:]27

12.5.2.4 Separate module procedures28

A separate module procedure is a module procedure defined by a separate-module-subprogram,29

by a function-subprogram in which the prefix of the initial function-stmt includes MODULE, or by a30

subroutine-subprogram in which the prefix of the initial subroutine-stmt includes MODULE. Its interface31

is declared by a module procedure interface body (12.3.2.1) in the specification-part of the module or32

submodule in which the procedure is defined, or in an ancestor module or submodule.33

R1234a separate-module-subprogram is MODULE PROCEDURE procedure-name34

[specification-part]35

[execution-part]36

[internal-subprogram-part]37

end-sep-subprogram-stmt38

R1234b end-sep-subprogram-stmt is END [PROCEDURE [procedure-name]]39

C1251a (R1234a) The procedure-name shall be the same as the name of a module procedure interface40

that is declared in the module or submodule in which the separate-module-subprogram is defined,41

or is declared in an ancestor of that program unit and is accessible by host association from that42

ancestor.43

C1251b (R1234b) If a procedure-name appears in the end-sep-subprogram-stmt , it shall be identical to44

the procedure-name in the MODULE PROCEDURE statement.45

A module procedure interface body and a subprogram that defines a separate module procedure corre-46

spond if they have the same name, and the module procedure interface is declared in the same program47

unit as the subprogram or is declared in an ancestor of the program unit in which the procedure is48

defined and is accessible by host association from that ancestor. A module procedure interface body49

14 May 2004 Page 4 of 10

14 May 2004 J3/04-324

shall not correspond to more than one subprogram that defines a separate module procedure.1

NOTE 12.40 1
2

A separate module procedure can be accessed by use association if and only if its interface body is
declared in the specification part of a module and its name has the PUBLIC attribute. A separate
module procedure that is not accessible by use association might still be accessible by way of a
procedure pointer, a dummy procedure, a type-bound procedure, a binding label, or means other
than Fortran.

If a procedure is defined by a separate-module-subprogram, its characteristics are specified by the corre-2

sponding module procedure interface body.3

If a separate module procedure is a function defined by a separate-module-subprogram, the result variable4

name is determined by the FUNCTION statement in the module procedure interface body. Otherwise,5

the result variable name is determined by the FUNCTION statement in the module subprogram.6

[In constraint C1253 replace “module-subprogram” by “a module-subprogram that does not define a 283:77

separate module procedure”.]8

[In the first line of the first paragraph after syntax rule R1237 in 12.5.2.6 insert “, submodule” after 284:379

“module”,]10

[After the second paragraph of subclause 15.4.1 insert the following constraint]: 403:38+11

C1506 A procedure defined in a submodule shall not have a binding label unless its interface is declared12

in the ancestor module.13

[In the list in subclause 16.0, add an item after item (1):] 405:9+14

(1 1
2) A submodule identifier (11.2.2),15

[In the second sentence of the first paragraph of 16.1, insert “non-submodule” before the first “program 405:1916

unit”.]17

[After the second sentence of the first paragraph of 16.1, insert a new sentence “A submodule identifier 405:2218

of a submodule is a global identifier and shall not be the same as the submodule identifier of any other19

submodule.”]20

[After Note 16.2 add:] 406:1-21

NOTE 16.2 1
2

Submodule identifiers are global identifiers, but since they consist of a module name and a de-
scendant submodule name, the name of a submodule can be the same as the name of another
submodule so long as they do not have the same ancestor module.

[In item (1) in the first numbered list in 16.2, after “abstract interfaces” insert “, module procedure 406:622

interfaces”.]23

[In the paragraph immediately before Note 16.3, after “(4.5.9)” insert “, and a separate module procedure 406:2024

shall have the same name as its corresponding module procedure interface body”.]25

[In the first line of the first paragraph of 16.4.1.3 insert “, a module procedure interface body” after 411:2,326

“module subprogram”. In the second line, insert “that is not a module procedure interface body” after27

“interface body”.]28

[In the third line of the first paragraph of 16.4.1.3, after“interface body.”, insert a new sentence: “A 411:429

submodule has access to the named entities of its parent by host association.”]30

[In the fifth line of the first paragraph of subclause 16.4.1.3, insert ‘, module procedure interfaces’ after 411:631

‘abstract interfaces’.]32

14 May 2004 Page 5 of 10

14 May 2004 J3/04-324

[In the third line after the sixteen-item list in 16.4.1.3 insert “that does not define a separate module 411:341

procedure” after the first “subprogram”.]2

[In the first line of Note 16.9, after “interface body” insert “that is not a module procedure interface 412:1+23

body”.]4

[Insert a new item after item (5)(d) in the list in 16.4.2.1.3:] 415:15+5

(d1
2) Is in the scoping unit of a submodule if any scoping unit in that submodule or any of its6

descendant submodules is in execution.7

[In item (3)(c) of 16.5.6 insert “or submodule” after the first instance of “module” and insert “or accessing 422:14-158

the submodule” after the second instance of “module”.]9

[In item (3)(d) of 16.5.6 insert “or submodule” after the first instance of “module” and insert “or accessing 422:16-1710

the submodule” after the second instance of “module”.]11

[Insert the following definitions into the glossary in alphabetical order:]12

ancestor (11.2.2) : Of a submodule, its parent or an ancestor of its parent. 425:15+13

child (11.2.2) : A submodule is a child of its parent. 426:43+14

correspond (12.5.2.4) : A module procedure interface body and a subprogram that defines a separate 427:31+15

module procedure correspond if they have the same name, and the module procedure interface is declared16

in the same program unit as the subprogram or is declared in an ancestor of the program unit in which17

the procedure is defined and is accessible by host association from that ancestor.18

descendant (11.2.2) : Of a module or submodule, one of its children or a descendant of one of its 428:31+19

children.20

module procedure interface (12.3.2.1) : An interface defined by an interface body in which MODULE 432:11+21

appears in the prefix of the initial function-stmt or subroutine-stmt . It declares the interface for a separate22

module procedure.23

parent (11.2.2) : Of a submodule, the module or submodule specified by the parent-identifier in its 433:3+24

submodule-stmt .25

separate module procedure (12.5.2.4): A module procedure defined by a separate-module-subprogram 434:30+26

or a function-subprogram or subroutine-subprogram in which MODULE appears in the prefix of the initial27

function-stmt or subroutine-stmt .28

submodule (2.2.5, 11.2.2) : A program unit that depends on a module or another submodule; it extends 435:20+29

the program unit on which it depends.30

submodule identifier (11.2.2) : Identifier of a submodule, consisting of the ancestor module name31

together with the submodule name.32

[Insert a new subclause immediately before C.9:] 477:29+33

C.8.3.9 Modules with submodules34

Each submodule specifies that it is the child of exactly one parent module or submodule. Therefore, a35

module and all of its descendant submodules stand in a tree-like relationship one to another.36

If a module procedure interface body that is specified in a module has public accessibility, and its37

corresponding separate module procedure is defined in a descendant of that module, the procedure can38

be accessed by use association. No other entity in a submodule can be accessed by use association. Each39

program unit that accesses a module by use association depends on it, and each submodule depends on40

its ancestor module. Therefore, if one changes a separate module procedure body in a submodule but41

does not change its corresponding module procedure interface, a tool for automatic program translation42

would not need to reprocess program units that access the module by use association. This is so even if43

the tool exploits the relative modification times of files as opposed to comparing the result of translating44

the module to the result of a previous translation.45

By constructing taller trees, one can put entities at intermediate levels that are shared by submodules46

at lower levels; changing these entities cannot change the interpretation of anything that is accessible47

14 May 2004 Page 6 of 10

14 May 2004 J3/04-324

from the module by use association. Developers of modules that embody large complicated concepts1

can exploit this possibility to organize components of the concept into submodules, while preserving the2

privacy of entities that are shared by the submodules and that ought not to be exposed to users of the3

module. Putting these shared entities at an intermediate level also prevents cascades of reprocessing4

and testing if some of them are changed.5

The following example illustrates a module, color points, with a submodule, color points a, that in6

turn has a submodule, color points b. Public entities declared within color points can be accessed by7

use association. The submodules color points a and color points b can be changed without causing8

retranslation of program units that access the module color points.9

The module color points does not have a contains-part , but a contains-part is not prohibited. The10

module could be published as definitive specification of the interface, without revealing trade secrets11

contained within color points a or color points b. Of course, a similar module without the module12

prefix in the interface bodies would serve equally well as documentation – but the procedures would be13

external procedures. It would make little difference to the consumer, but the developer would forfeit all14

of the advantages of modules.15

module color_points16

17

type color_point18

private19

real :: x, y20

integer :: color21

end type color_point22

23

interface ! Interfaces for procedures with separate24

! bodies in the submodule color_points_a25

module subroutine color_point_del (p) ! Destroy a color_point object26

type(color_point), allocatable :: p27

end subroutine color_point_del28

! Distance between two color_point objects29

real module function color_point_dist (a, b)30

type(color_point), intent(in) :: a, b31

end function color_point_dist32

module subroutine color_point_draw (p) ! Draw a color_point object33

type(color_point), intent(in) :: p34

end subroutine color_point_draw35

module subroutine color_point_new (p) ! Create a color_point object36

type(color_point), allocatable :: p37

end subroutine color_point_new38

end interface39

40

end module color_points41

The only entities within color points a that can be accessed by use association are separate module42

procedures for which corresponding module procedure interface bodies are provided in color points.43

If the procedures are changed but their interfaces are not, the interface from program units that access44

them by use association is unchanged. If the module and submodule are in separate files, utilities that45

examine the time of modification of a file would notice that changes in the module could affect the46

translation of its submodules or of program units that access the module by use association, but that47

changes in submodules could not affect the translation of the parent module or program units that access48

it by use association.49

The variable instance count is not accessible by use association of color points, but is accessible50

within color points a, and its submodules.51

14 May 2004 Page 7 of 10

14 May 2004 J3/04-324

submodule (color_points) color_points_a ! Submodule of color_points1

2

integer, save :: instance_count = 03

4

interface ! Interface for a procedure with a separate5

! body in submodule color_points_b6

module subroutine inquire_palette (pt, pal)7

use palette_stuff ! palette_stuff, especially submodules8

! thereof, can access color_points by use9

! association without causing a circular10

! dependence during translation because this11

! use is not in the module. Furthermore,12

! changes in the module palette_stuff do not13

! affect the translation of color_points.14

type(color_point), intent(in) :: pt15

type(palette), intent(out) :: pal16

end subroutine inquire_palette17

18

end interface19

20

contains ! Invisible bodies for public module procedure interfaces21

! declared in the module22

23

module subroutine color_point_del (p)24

type(color_point), allocatable :: p25

instance_count = instance_count - 126

deallocate (p)27

end subroutine color_point_del28

real module function color_point_dist (a, b) result (dist)29

type(color_point), intent(in) :: a, b30

dist = sqrt((b%x - a%x)**2 + (b%y - a%y)**2)31

end function color_point_dist32

module subroutine color_point_new (p)33

type(color_point), allocatable :: p34

instance_count = instance_count + 135

allocate (p)36

end subroutine color_point_new37

38

end submodule color_points_a39

The subroutine inquire palette is accessible within color points a because its interface is declared40

therein. It is not, however, accessible by use association, because its interface is not declared in the41

module, color points. Since the interface is not declared in the module, changes in the interface42

cannot affect the translation of program units that access the module by use association.43

14 May 2004 Page 8 of 10

14 May 2004 J3/04-324

submodule (color_points:color_points_a) color_points_b ! Subsidiary**2 submodule1

2

contains3

! Invisible body for interface declared in the ancestor module4

module subroutine color_point_draw (p)5

use palette_stuff, only: palette6

type(color_point), intent(in) :: p7

type(palette) :: MyPalette8

...; call inquire_palette (p, MyPalette); ...9

end subroutine color_point_draw10

11

! Invisible body for interface declared in the parent submodule12

module procedure inquire_palette13

... implementation of inquire_palette14

end procedure inquire_palette15

16

subroutine private_stuff ! not accessible from color_points_a17

...18

end subroutine private_stuff19

20

end submodule color_points_b21

22

module palette_stuff23

type :: palette ; ... ; end type palette24

contains25

subroutine test_palette (p)26

! Draw a color wheel using procedures from the color_points module27

type(palette), intent(in) :: p28

use color_points ! This does not cause a circular dependency because29

! the "use palette_stuff" that is logically within30

! color_points is in the color_points_a submodule.31

...32

end subroutine test_palette33

end module palette_stuff34

There is a use palette stuff in color points a, and a use color points in palette stuff. The35

use palette stuff would cause a circular reference if it appeared in color points. In this case, it36

does not cause a circular dependence because it is in a submodule. Submodules are not accessible by use37

association, and therefore what would be a circular appearance of use palette stuff is not accessed.38

program main39

use color_points40

! "instance_count" and "inquire_palette" are not accessible here41

! because they are not declared in the "color_points" module.42

! "color_points_a" and "color_points_b" cannot be accessed by43

! use association.44

interface draw ! just to demonstrate it’s possible45

module procedure color_point_draw46

end interface47

type(color_point) :: C_1, C_248

real :: RC49

...50

call color_point_new (c_1) ! body in color_points_a, interface in color_points51

...52

call draw (c_1) ! body in color_points_b, specific interface53

14 May 2004 Page 9 of 10

14 May 2004 J3/04-324

! in color_points, generic interface here.1

...2

rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points3

...4

call color_point_del (c_1) ! body in color_points_a, interface in color_points5

...6

end program main7

A multilevel submodule system can be used to package and organize a large and interconnected concept8

without exposing entities of one subsystem to other subsystems.9

Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to10

fluid flow, thermodynamics, and electromagnetism. Fluid flow simulation requires simulation of subsonic,11

supersonic, and hypersonic flow. This problem decomposition can be reflected in the submodule structure12

of the Plasma module:13

Plasma module14

|15

|---------------------|---------------------|16

| | |17

Flow submodule Thermal submodule Electromagnetics18

| Submodule19

|-------------------|-------------------|20

| | |21

Subsonic Supersonic Hypersonic22

Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting23

them within the Flow submodule. One then need not worry about accidental use of these entities by24

use association or by the Thermal or Electromagnetics modules, or the development of a dependency25

of correct operation of those subsystems upon the representation of entities of the Flow subsystem as a26

consequence of maintenance. Since these these entities are not accessible by use association, if any of27

them are changed, the new values cannot be accessed in program units that access the Plasma module28

by use association; the answer to the question “where are these entities used” is therefore confined to29

the set of descendant submodules of the Flow submodule.30

14 May 2004 Page 10 of 10

