
11 June 2004 J3/04-345

Subject: Coroutines (again)
From: Van Snyder
Reference: 03-258r1, section 1.1; 04-149r1

1 Number1

TBD2

2 Title3

Coroutines.4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide for coroutines.10

6 Rationale11

In many cases when a “library” procedure needs access to user-provided code, the user-provided code12

needs access to entities of which the libary procedure is unaware. There are at least four ways by which13

the user-provided code can gain access to these entities:14

• The user-provided code can be implemented as a procedure that is invoked either directly or by15

way of a dummy procedure, the extra entities can be made public entities of some module, and16

accessed in the user-provided procedure by use association.17

• The user-provided code can be implemented as a procedure that is invoked either directly or by18

way of a dummy procedure, and the extra entities can be put into common if they’re data objects.19

• The user-provided code can be implemented as a procedure that takes a dummy argument of20

extensible type, which procedure is invoked either directly or by way of a dummy procedure, and21

the extra entities can be put into an extension of that type.22

• The library procedure can provide for reverse communication, that is, when it needs access to user-23

provided code it returns instead of calling a procedure. When the user-provided code reinvokes24

the library procedure, it somehow finds its way back to the appropriate place.25

Each of these solutions has drawbacks. Entities that are needlessly public increase maintenance expense.26

The maintenance expense of common is well known. If the user-provided procedure expects to find its27

extra information in an extension of the type of an argument passed through the library procedure, the28

dummy argument has to be polymorphic, and the user-provided code has to execute a SELECT TYPE29

construct to access the extension. Reverse communication causes a mess that requires GO TO statements30

to resume the library procedure where it left off, which in turn requires to simulate conventional control31

structures using GO TO statements. This reduces reliability and increases development and maintenance32

costs.33

Reverse communication is, however, a blunt-force simulation of a well-behaved control structure that34

has been well-known to computer scientists for decades: The coroutine. Coroutines would allow user-35

provided code needed by library procedures more easily to gain access to entities of which the library36

11 June 2004 Page 1 of 6

11 June 2004 J3/04-345

procedure is unaware, without causing the disruption of the control structure of the library procedure1

that reverse communication now causes.2

I polled users of my library software for solutions of ordinary differential equations (both initial value3

and boundary value), evaluation of integrals by quadrature (in one and several dimensions), nonlinear4

least squares, nonlinear zero finding, and nonlinear optimization.5

All of these packages provide for both forward (“call a subroutine”) and reverse (“return when access to6

user code is needed”) communication. The latter is a coroutine, heretofore implemented without syn-7

tactic support. The lack of syntactic support makes a mess of the control structure of these procedures.8

I asked the users these questions:9

1. Do you use forward or reverse communication?10

2. On some arbitrary scale of your own devising, rate your model as “simple” or “complicated.”11

3. If you presently use reverse communication, and I revise my software to require you to use forward12

communication, and explain excellent new features in Fortran 2003 to support getting extra (non-13

state) parameters into your model, will it cause trouble for you?14

4. If I were to revise my software so that in your reverse communication loop you would need to15

replace a CALL statement with a new RESUME statement, would it cause trouble for you?16

Roughly half the users answered question #1 with “reverse.” Of those, roughly 80% answered question17

#2 with “complicated.” Almost all of the users who answered questions #1 and #2 in that way answered18

question #3 with, in essence, “Fu** off!” All of those who answered question #3 in that way answered19

question #4 with “not a problem.”20

Intrinsic support for coroutines would allow me to replace the internal control structures of my library21

routines that provide for reverse communication with ones that are far clearer and easier to understand,22

thereby reducing my long-term maintenance costs, without causing substantial cost for my users.23

Coroutines are also useful to implement iterators, which are procedures that can be used both to enumer-24

ate the elements of a data structure and to control iteration of a loop that is processing those elements.25

Without coroutines, the way this is usually supported is to put the loop body into a subroutine, and26

pass that subroutine’s name to the iterator. The problem with this is that it increases both development27

and maintenance costs. The subroutine that implements the loop body can’t be an internal subroutine28

so one must either bundle up everything the loop references and put it into an extension of the type29

of some object the iterator passes through to the subroutine, or make everything more global than it30

deserves to be. Of course, these considerations apply equally to the user code needed by quadrature etc.31

software, but the case of a loop body makes the undesirability of packaging it as a separate subroutine32

more obvious.33

7 Estimated Impact34

Small. Minor additions to Section 12.35

8 Detailed Specification36

Provide two new statements, which we shall here call SUSPEND and RESUME,37

If a subroutine suspends its execution by executing a SUSPEND statement, and its execution is subse-38

quently resumed by executing a RESUME statement, execution resumes after the SUSPEND statement.39

Otherwise (either execution of the subroutine was terminated by execution of a RETURN or END state-40

ment, or it was invoked by a CALL statement), execution continues with the first executable statement41

of the invoked subroutine.42

It is nonsense to allow a SUSPEND statement in a function, because there’s no way to RESUME a43

function.44

11 June 2004 Page 2 of 6

11 June 2004 J3/04-345

It would be reasonable to restrict coroutines to be nonrecursive, and to prohibit a SUSPEND and1

ENTRY statement to appear in the same subroutine.2

A third statement, viz. COROUTINE could replace the SUBROUTINE statement, indicating that the3

program unit could contain a SUSPEND statement and could not contain an ENTRY statement. It may4

be necessary to add this statement in order for implementations to make dummy coroutines work. This5

could add some complication, as all references to the terms “subroutine” and “procedure” might need6

to be examined to determine whether it is necessary to add the term “coroutine” to the discussion. On7

the other hand, maybe it’s enough to say “a coroutine is a subroutine that. . . .”8

The RESUME statement need not appear in the same subprogram as the CALL statement that initiated9

execution of the coroutine.10

It is not necessary or useful to prohibit internal subroutines to be coroutines.11

Coroutines should be allowed to be type-bound procedures, actual arguments and procedure pointer12

targets. Generic coroutines should be allowed.13

The question whether the entire instance of the procedure survives execution of a SUSPEND statement,14

or only those data entities that have the SAVE attribute survive, can be decided later. Similarly, the15

question whether modules and common blocks accessed from the coroutine survive can be decided later.16

Fortran already has a limited form of coroutine: The relation between an input/output item list and a17

format is a coroutine relation. So it’s not an entirely new concept for Fortran.18

8.1 One possible implementation strategy19

The main implementation problem is returning to the correct point of execution when a RESUME20

statement is executed. This can be accomplished by a hidden save variable to which the processor refers21

when control arrives in the procedure (recall that it is proposed to prohibit recursive coroutines). It is22

initialized by the processor to indicate the last exit was a result of a RETURN or END statement. If23

a SUSPEND statement is executed, the value of the hidden variable is changed to indicate that control24

should resume at the first executable statement after that SUSPEND statement. If control arrives in25

the procedure as a result of a CALL statement, or the hidden variable indicates that the last exit was a26

result of a RETURN or END statement, control proceeds to the first executable statement (recall that27

it is proposed that ENTRY statements not be allowed in coroutines). Otherwise, control proceeds to28

the point indicated by the hidden variable. The hidden variable’s use could be similar to an assigned29

GO TO or to a computed GO TO, at the whim of the processor’s developer.30

A secondary problem is distinguishing whether control arrives in the procedure as a result of a CALL31

statement or a RESUME statement. This can be accomplished in at least two ways. One is to have a32

hidden argument that distinguishes the cases. The other is for the processor to generate two entry points,33

with appropriately mangled names, with one referenced by CALL statements and the other referenced34

by RESUME statements.35

If the entire activation record survives a SUSPEND statement, it could be represented by a hidden saved36

pointer. It would be necessary to destroy a prior activation record if control arrives as a result of a CALL37

statement, to prevent memory leaks. The question whether the resurrected activation record includes38

information about argument association needs discussion. If so, then RESUME statements should not39

be permitted to have arguments. I prefer that the resurrected activation record not include information40

about argument association, because the absence of an argument list on the RESUME statement hides41

the dataflow from the human reader, and the semantics of VALUE become difficult to describe.42

If the entire activation record does not survive a SUSPEND statement, there is still a question whether43

a SUSPEND statement should be allowed within a DO construct that has loop-control consisting of44

do-variable = scalar-int-expr , scalar-int-expr [, scalar-int-expr]. It is conceivable that processors could45

save and restore the hidden quantities inherent in the description in 8.1.6.4.1, but it may be easier simply46

to prohibit it.47

No matter whether the entire activation record survives a SUSPEND statement or not, and if it does48

whether it includes argument association information, the specification part needs to be elaborated,49

at least to recreate automatic objects, because their extents and length parameters could depend on50

11 June 2004 Page 3 of 6

11 June 2004 J3/04-345

common variables or variables accessed by use association (or host association in the case of internal1

coroutines).2

8.2 Inferior alternative3

An inferior alternative is to allow an ENTRY statement within a construct other than WHERE, FORALL4

or DO with loop-control consisting of do-variable = scalar-int-expr , scalar-int-expr [, scalar-int-expr].5

This is inferior because it puts the onus on the user to return to the correct place in the library code.6

This could be ameliorated somewhat if the library routine has two layers — one that the user always7

calls by the same name, which looks at a flag that controls what’s going on and re-invokes the “real”8

subroutine by the correct entry point. This slows things down. It is a step forward from the current9

situation because it doesn’t require to disrupt the control structure to implement reverse communication.10

All in all, it’s a relatively crappy solution.11

9 History12

This proposal was discussed and eventually rejected at meeting 166. The argument that led to its13

rejection was that one could always put the extra information for user-defined code into an extensible14

type. It was not considered at the time, however, that this requires the dummy argument of the15

user-provided subprogram to be polymorphic, and that the user-provided subprogram must execute a16

SELECT TYPE construct to gain access to the extra information. This overhead would not be necessary17

in a coroutine interaction. Furthermore, type extension cannot be applied to iterator construction. It18

was therefore brought up again at meeting 168, and rejected again, with the primary reason given being19

“we want to think about it some more.” After gathering input from users, who urged resubmitting it,20

it was resubmitted at meeting 169.21

10 Examples22

In the simplest case, to simulate coroutines with existing facilities, one would have an argument that23

does dual duty to indicate what the caller is to do when the subroutine returns, and controls where24

the subroutine goes with it is called. Since the subroutine may return from several places for the same25

reason, the caller’s decision-making process is messier than necessary. One usually instead has two26

arguments, a what argument that tells the caller what to do, and a where argument that keeps track of27

where the subroutine is to go when it gets control. The where argument is set by the caller to “start at28

the beginning,” and if the caller changes it otherwise the guarantee is voided. The where argument can29

be eliminated by using two entry points in the subroutine: one to start it up, which sets a local saved30

where variable to “the beginning,” and the other to continue processing.31

The next two pages give examples of simulating coroutines with current facilities, and doing it directly32

using the proposed new facility. The simulation does not show whether where is an argument or a saved33

local variable, as outlined above. Assume that appropriate stuff is saved, either explicitly or because34

activation records are resurrected by RESUME statements.35

11 June 2004 Page 4 of 6

11 June 2004 J3/04-345

10.1 Simulated1

go to (20, 60, 90), where2

! Set up at beginning of problem, then3

what = function ! "what" is a dummy argument4

10 continue5

if (have enough function values for basic formula) go to 306

! Get ready for a function value for basic quadrature step, then7

where = 18

return9

20 continue10

! Add function * weight into quadrature estimate11

go to 1012

30 if (error estimate is small enough) then13

where = 014

what = good enough15

return16

end if17

40 if (another formula doesn’t exist) go to 7018

50 continue19

! if (have enough function values for extended formula) go to 3020

! Get ready for a function value for extended quadrature step, then21

where = 222

return23

60 continue24

! Add function * weight into quadrature estimate25

go to 5026

70 continue27

! Form a difference line of function values, then28

80 continue29

if (nothing goofy in difference line) then30

! Subdivide interval if it looks like smaller error will be31

! achieved (control structure for this not shown), or32

what = done, but not as good as you asked for33

where = 034

return35

end if36

if (abscissa of difficult behavior sufficiently well isolated) then37

! subdivide the interval -- control structure for this not shown38

end if39

! Decide where to add a point to difference line to search for40

! difficult behavior, then41

where = 342

what = function43

return44

90 continue45

! add function value to difference line46

go to 8047

48

! Caller:49

where = 050

do51

call quadrature (a, b, answer, tol, err, what, where)52

if (what /= function) exit53

! evaluate function54

end do55

Aside from two IF . . . THEN . . . END IF blocks, this could be Fortran 66 code. The control flow is56

“hiding” in the value of where.57

11 June 2004 Page 5 of 6

11 June 2004 J3/04-345

10.2 With coroutines1

! Set up at beginning of problem, then2

what = function ! "what" is a dummy argument3

do while (need a function value for basic formula)4

! Get ready for a function value for basic quadrature step, then5

suspend6

! Add function * weight into quadrature estimate7

end do8

do9

if (error estimate is small enough) then10

what = good enough11

return12

end if13

if (another formula does not exist) exit14

do while (need a function value for extended formula)15

! Get ready for a function value for extended quadrature step, then16

suspend17

! Add function * weight into quadrature estimate18

end do19

end do20

! Form a difference line of function values, then21

do22

if (nothing goofy in difference line) then23

! Subdivide interval if it looks like smaller error will be24

! achieved (control structure for this not shown), or25

what = done, but not as good as you asked for26

return27

end if28

if (abscissa of difficult behavior sufficiently well isolated) then29

! subdivide the interval -- control structure for this not shown30

end if31

! Decide where to add a point to difference line to search for32

! difficult behavior, then33

what = function34

suspend35

! add function value to difference line36

end do37

38

! Caller:39

call quadrature (a, b, answer, tol, err, what)40

do while (what == function)41

! evaluate function42

resume quadrature (a, b, answer, tol, err, what)43

end do44

The control flow is obvious. Which would you prefer to write and maintain?45

11 June 2004 Page 6 of 6

