
10 August 2004 J3/04-350r1

Subject: Allow more general forward type reference for components
From: Van Snyder

1 Number1

TBD2

2 Title3

Allow more general forward type reference for components.4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

This is a two-level proposal.10

5.1 Level 111

Allow a forward reference for the type of an allocatable component.12

5.2 Level 213

Allow a forward reference for the type of any component, so long as any circular dependence that arises14

involves a component with the POINTER or ALLOCATABLE attribute.15

6 Rationale16

6.1 Level 117

It’s a little bit weird that the appearance of the POINTER attribute allows a forward reference for the18

type of a component, but ALLOCATABLE doesn’t. In the discussion that led to MOVE ALLOC, it was19

argued that one could use it to create linked lists without using pointers. Without allowing allocatable20

components to have declared types that are not yet defined, that dream is in fact not realizable. That21

the constraints were not updated when allocatable components were done was probably an oversight22

rather than a conscious decision.23

6.2 Level 224

The only purposes served by C438 are to prevent infinite-size types — those that have themselves as a25

direct component (as defined below), and to avoid expensive circularity checks. Prohibiting a forward26

reference was a simple way to do this — but it also prevents orderings of type definitions that some27

would find clearer than the reverse of a depth- or breadth-first traversal of the dependency DAG.28

Processors have to cope with forward type references for FUNCTION statements, so that’s clearly not29

an unsolved problem. Processors have to prevent circular module dependencies, so circular-reference30

detection also is clearly not an unsolved problem.31

7 Estimated Impact32

Trivial for the standard — at 3 on the N1594 scale; probably in the small range for processors.33

The obvious way to discover circularity requires O(n2) operations where n is the number of direct34

components (as defined below) in a type. It can be done with less work:35

10 August 2004 Page 1 of 2



10 August 2004 J3/04-350r1

For each type, mark whether it has any nonpointer nonallocatable components for which the type1

definition is not yet accessible, or the type of some component is marked.2

For each marked type, construct a list of the types of the nonpointer nonallocatable components that3

are either not yet accessible or have types that are marked.4

To check for circularity, it is only necessary to check the types in the list.5

Thereby, types for which all nonpointer nonallocatable components are all accessible — i.e., types defined6

in a presently-allowed order — would have zero-length lists, would not be marked, and would not appear7

in any other type’s “check these types for circularity” lists.8

A processor could update the “marked components” and “marked types” lists when a type is defined if9

it discovers that that definition causes another type to become completely defined.10

8 Detailed Specification11

The Basic Functionality section covers it. Here are illustrative edits, to give an idea of the effect on the12

standard.13

8.1 Level 114

[Replace “POINTER . . . not” by “neither the POINTER nor ALLOCATABLE attribute is”.] 50:1815

[Replace “POINTER” by “POINTER or ALLOCATABLE”. Ummm, shouldn’t C439 be a note anyway?] 50:2116

8.2 Level 217

The direct components of a derived type are its nonpointer nonallocatable components of derived 44:29+ New ¶18

type, and the direct components of the types of those components.19

This definition of direct components is different from (and simpler than) the definition in 01-007. Note to J320

[Replace C438 and C439:] 50:18-2321

C438 (R440) A derived type shall not have a direct component of the same declared type.22

9 History23

10 August 2004 Page 2 of 2


