
10 August 2004 J3/04-357r1

Subject: Another whack at embedding conditionals in expressions etc.
From: Van Snyder
Reference: 03-258r1, section 2.8.1; 04-192

1 Number1

TBD2

2 Title3

Another whack at embedding conditionals in expressions etc.4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Allow to embed decisions within expressions, as actual arguments, or as pointer-assignment targets.10

Allow to compute whether an actual argument is present or absent.11

6 Rationale12

The syntaxes proposed below in the Detailed Specification section are a functional syntax of the form13

IF(condition, true-result, false-result), and an operator-like syntax. It is intended that the semantics do14

not depend on the chosen syntax. The functional form is used in the examples here.15

One sometimes needs to select one thing or another to use within an expression or as a pointer-assignment16

target. At present, for the former usage, one creates a temporary variable, sets that variable with an17

if-then-else construct, and then evaluates the expression using the temporary variable. It would be more18

convenient if one could embed the “use A or B depending on C” decision within an expression. These19

may be such things as “IF (A > 0, log(A), -huge(0.0))” or “IF (present(A), A(:,i), B)” where B is of20

rank one. In these cases, the value of one or the other of the outcomes is desired, but it’s important21

not to calculate the “wrong” one because it will raise an error condition. In cases such as “p => IF (22

associated(A), A(:,i), NULL()),” it’s important not to try to take the section A(:,i) if A is not associated.23

Even if A is associated, the value of A(:,i) is not needed.24

One would like to be able to compute whether an actual argument that is to be associated with an25

optional dummy argument is to be considered to be present or absent. This isn’t a compelling desire in26

the case of one of these beasts, but for n of them, one needs a 2n-way if-elseif. . . -else-endif construct with27

a different one of the 2n possible combinations of present actual arguments in each branch. It would be28

more convenient if one could use an actual argument of the form “IF(A, B)” meaning “if A then B is29

the actual argument else the actual argument is absent.” In these cases, it’s important that B, not the30

value of B, is the actual argument — at least in the INTENT([IN]OUT) case. An example of this might31

be “IF(present(A), A(:,i))” meaning the actual argument is A(:,i) if A is present and it is absent if A is32

not present, or something similar with “present” replaced by “associated” or “allocated.”33

One would like to be able to select one actual argument or another depending on some condition. The34

ways to do this are with a 2n-way if-elseif. . . -else-endif construct for n arguments, or to have n sequences35

that associate a pointer with one or another of the desired arguments (or nullify it, if that was one of the36

outcomes). It would be more convenient to be able to write “IF(A, B, C).” In these cases, it’s important37

that either B or C, not the value of one or the other, becomes the actual argument — at least in the38

INTENT([IN]OUT) case.39

10 August 2004 Page 1 of 3

10 August 2004 J3/04-357r1

No matter whether a functional or operational syntax is chosen, the entity behaves somewhat differently1

from existing functions or operators, in that the “result” is one of the arguments/operands, not the value2

of one of them. That is, these entities behave more like run-time macro substitutions than functions or3

operators.4

7 Estimated Impact5

Small, both for standard and implementors.6

8 Detailed Specification7

8.1 Functional syntax8

Provide two new intrinsic functions, named IF here but the particular names are not important. In both9

cases, the first argument is of type logical, and is evaluated before the function is “invoked.” In the10

three-argument case, the result is the second argument if the first is true, and the third argument if the11

first is false.12

In the two-argument case, a reference to which is permitted only as an actual argument associated with13

an optional dummy argument, the result is the second argument iff the first is true, else it is an absent14

actual argument.15

Notice that the specification carefully specifies “the result is . . . ,” not “the result is the value of”16

For all other functions, the result is an entity distinct from its arguments. For these functions, the result17

is one of the arguments. The “functions” behave more like run-time macro substitutions than functions.18

8.1.1 Illustrative edits w.r.t. 04-007, to indicate the scope of the proposed change19

C1220 1
2 (R1217) A reference to the two-argument form of the IF intrinsic function shall not appear 266:16+20

except as an actual argument corresponding to an optional dummy argument.21

[Replace “it” by “any function other than the IF intrinsic function (13.7.511
2)”.] 276:322

13.5.171
2

Conditional functions 298:2+23

IF (MASK, TSOURCE, FSOURCE) Result is TSOURCE or FSOURCE, depending24

on MASK.25

IF (MASK, TSOURCE) Result is TSOURCE if MASK is true, else result26

is an absent actual argument.27

13.7.511
2

IF (MASK, TSOURCE, FSOURCE) or IF (MASK, TSOURCE) 322:23+28

Description. Embed a decision within an expression, or calculate whether an actual argument29

is present.30

Class. Transformational.31

Arguments.32

MASK shall be of type logical and shall be scalar.33

TSOURCE may be of any type, and may have any type parameter values. Shall be TKR
compatible (5.1.1.2) with FSOURCE. It is not evaluated before the function
is invoked. It may be undefined. If it is a pointer it need not be associated.
If it is allocatable it need not be allocated.34

FSOURCE shall be TKR compatible with TSOURCE. It shall be polymorphic if and
only if TSOURCE is polymorphic. It is not evaluated before the function is
invoked. It may be undefined. If it is a pointer it need not be associated. If
it is allocatable it need not be allocated.35

Result Characteristics.36

Case (i): Three arguments: The result characteristics are the same as TSOURCE if MASK37

is true, else the same as FSOURCE.38

10 August 2004 Page 2 of 3

10 August 2004 J3/04-357r1

Case (ii): Two arguments: The result characteristics are the same as TSOURCE if MASK1

is true, else the result is an absent actual argument.2

Result.3

Case (i): Three arguments: The result is the TSOURCE argument if the MASK argument4

is true, else it is the FSOURCE argument. The result, and therefore the function5

reference, may appear in a variable-definition context (16.5.7) if TSOURCE and6

FSOURCE are permitted to appear in a variable-definition context.7

Case (ii): Two arguments: The result is the TSOURCE argument if and only if the MASK8

argument is true. If MASK is false the result is undefined, and the actual ar-9

gument consisting of the function reference is absent. The result, and therefore10

the function reference, may appear in a variable-definition context (16.5.7) if11

TSOURCE is permitted to appear in a variable-definition context.12

Examples.13

Case (i): The result of IF (PRESENT(X), X, 0.0) is X if X is present, else it is 0.0.14

Case (ii): The result of IF (ASSOCIATED(P), P(::2), NULL()) is the array section P(::2),15

which is not a pointer, if P is associated, and NULL(), which is a pointer, if P is16

not associated. Both are valid targets in a pointer assignment.17

Case (iii): The result of IF (ASSOCIATED(P), P(::2)) is a present actual argument that18

is the array section P(::2) if P is an associated pointer, else it is an absent actual19

argument.20

Case (iv): The result of IF (PRESENT(D), D(:,J)) is a present actual argument consisting21

of the array section D(:,J) if D is a present dummy argument, else it is an absent22

actual argument.23

8.2 Operational syntax24

Provide a distfix-operator-like syntax, wherein one operand is of type logical, and is initially evaluated,25

and the result is one or the other of two remaining operands. The two remaining operands are not26

evaluated as a consequence of their appearance within the distfix-operator syntax, but the selected one27

might be evaluated if the context of the appearance of the distfix-operator syntax demands a value. The28

syntax suggested in 04-192 was “A ? B : C”, but operators spelled like defined operators, e.g., “B .else. C29

.if. A” or “A .picks. B .else. C” would work also.30

Provide an infix-operator-like syntax, wherein one operand is of type logical, and is initially evaluated,31

with the result being the other operand if the initially-evaluated one is true, and an absent actual32

argument otherwise. The syntax suggested in 04-192 was “A ? B” but an operator spelled like a defined33

operator, e.g., “B .if. A” would work also. In either case, B would not necessarily be evaluated even34

if A is true. Instead, if A is true, B would be associated with the corresponding dummy argument.35

Considering B to be an actual argument may or may not cause it to be evaluated. For example, if the36

actual and dummy arguments are pointers, B is not evaluated, while if B is an expression — a more37

complicated one than a variable — it is evaluated. But that is entirely dependent on the context of the38

appearance of the “operator,” not the fact of the appearance of B as an “operand.”39

Illustrative edits are not provided in this case, but would not be much different in magnitude from the40

functional-syntax case.41

9 History42

Concept originally submitted in 04-192 at J3 meeting 167.43

10 August 2004 Page 3 of 3

