
11 July 2004 J3/04-363

Subject: Edits for .ANDTHEN. and .ORELSE.
From: Van Snyder
Reference: 03-258r1, section 2.8.2; 04-193, 04-192, 04-357

1 Introduction1

The concept of and and or operators that are guaranteed to short circuit evaluation was described in2

03-258r1 and 04-193. On the “hate it, dislike it, like it, love it” scale it was rated 0, 1, 6, 3. On the3

“small, medium, large” scale it was rated 9, 2, 0. JOR later rated it “medium.”4

The brevity of the edits presented here suggest it really does belong at “small.”5

The precedence of .ANDTHEN. is proposed to be immediately below that of .AND., while the precedence6

of .ORELSE. is proposed to be immediately below that of .OR. If the precedence were the same, A .AND.7

B .ANDTHEN. C could be parsed as (A .AND. B) .ANDTHEN. C or as A .AND. (B .ANDTHEN. C). In the8

first case, one can be certain that C is not evaluated if either A or B is false. In the second case, one can9

only be sure that C is not evaluated if B is false. Similarly, A .ANDTHEN. B .AND. C could be parsed10

either as (A .ANDTHEN. B) .AND. C or A .ANDTHEN. (B .AND. C). In the first case, one can be certain11

that B is not evaluated if A is false, while in the second case one can be certain that neither B nor C is12

evaluated if A is false. Similar arguments apply to .ORELSE. The standard should not be so ambiguous.13

It is not proposed to put the precedence of .ANDTHEN. and .ORELSE. below .EQV. and .NEQV.14

because it is likely that programmers will change .AND. to .ANDTHEN. or vice-versa, and similarly15

for .OR. and .ORELSE. The reason to change AND. to .ANDTHEN. is a discovery that something in16

the second operand is undefined if the first operand is false. The reason for the opposite change is a17

discovery that everything in the second operand is defined no matter whether the first operand is false,18

and using .ANDTHEN. causes performance problems. Assuming the parentheses used here to indicate19

precedence aren’t actually present, it would be unwise to arrange that (A .AND. B) .EQV. (C .AND.20

D) becomes A .ANDTHEN. (B .EQV. C) .ANDTHEN. D, and vice-versa.21

The semantical property of these operators that their second operand is not evaluated if the first is false22

(true) could be provided by conditional expressions (04-192) or a conditional-execution intrinsic function23

(04-357), viz. A .ANDTHEN. B could be represented A ? B : .FALSE. or IF (A, B, .FALSE.) and A24

.ORELSE. B could be represented as A ? .TRUE. : B or IF (A, .TRUE., B) . Thus, if the proposal25

for conditional expressions proceeds, this proposal is somewhat redundant.26

2 Edits27

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a28

page and line number or line number range implies all of the indicated text is to be replaced by associated29

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after30

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.31

R719 1
2 andthen-op is .ANDTHEN. 26:25+32

R720 1
2 orelse-op is .ORELSE. 26:26+33

[Insert “and .ANDTHEN.” after “.AND” and “and .ORELSE.” after “.OR.”.] 44:1434

R714 1
2 andthen-operand is [andthen-operand and-op] and-operand 120:5-635

R715 or-operand is [or-operand andthen-op] andthen-operand36

R715 1
2 orelse-operand is [orelse-operand or-op] or-operand37

R716 equiv-operand is [equiv-operand orelse-op] orelse-operand38

R719 1
2 andthen-op is .ANDTHEN. 120:9+39

R720 1
2 orelse-op is .ORELSE. 120:10+40

[Add “, .ANDTHEN.” after “.AND.” and “, .ORELSE.” after “.OR.” in the first column of Table 7.1.] 121:7+1741

11 July 2004 Page 1 of 2

11 July 2004 J3/04-363

[Add “, .ANDTHEN.” after “.AND.” and “, .ORELSE.” after “.OR.”.] 121:201

[Replace “Once” by “For the .AND., .OR., .EQV., and .NEQV. operators, once”.] 132:42

For the .ANDTHEN. operator the processor shall not evaluate the second operand if the first is false. For 132:8- New ¶3

the .ORELSE. operator, the processor shall not evalate the second operand if the first is true. Otherwise,4

once the interpretation of an expression has been established in accordance with the rules given in 7.2.4,5

the processor may evaluate any other expression that is logically equivalent, provided that the integrity6

of parentheses in any expression is not violated.7

[Insert two new rows in Table 7.5:] 135:28+4,5+8

.ANDTHEN. Logical conjunction x1 .ANDTHEN. x2 True if x1 and x2 are both true,
but x2 shall not be evaluated if
x1 is false

.ORELSE. Logical inclusive disjunction x1 .ORELSE. x2 True if either x1 or x2 is true,
but x2 shall not be evaluated if
x1 is true

[In the heading of Table 7.6, Add “x1 .ANDTHEN. x2” under “x1 .AND. x2” and “x1 .ORELSE. x2” 136:1+2+9

under “x1 .OR. x2”.]10

[In Table 7.7, replace the .OR. row] 136:5+1311

Logical .ANDTHEN. ·
Logical .OR. ·
Logical .ORELSE. ·

11 July 2004 Page 2 of 2

