
11 November 2004 J3/04-380r2

Subject: Coroutines (hopefully done)
From: Van Snyder

1 Number1

TBD2

2 Title3

Coroutines.4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide for coroutines.10

6 Rationale11

In many cases when a “library” procedure needs access to user-provided code, the user-provided code12

needs access to data of which the library procedure is unaware. There are at least three ways by which13

the user-provided code can gain access to these entities:14

• The user-provided code can be implemented as a procedure that is invoked by the library procedure,15

with the extra data stored in globally-accessible variables.16

• The user-provided code can be implemented as a procedure that takes a dummy argument of17

extensible type, which procedure is invoked by the library procedure, with the extra entities in an18

extension of that type.19

• The library procedure can provide for reverse communication, that is, when it needs access to user-20

provided code it returns instead of calling a procedure. When the user-provided code reinvokes21

the library procedure, it somehow finds its way back to the appropriate place.22

Each of these solutions has drawbacks. Entities that are needlessly public increase maintenance expense.23

If the user-provided procedure expects to find its extra data in an extension of the type of an argument24

passed through the library procedure, the dummy argument has to be polymorphic, and the user-provided25

code has to execute a SELECT TYPE construct to access the extension. Reverse communication causes26

a mess that requires GO TO statements to resume the library procedure where it left off, which in27

turn requires one to simulate conventional control structures using GO TO statements. This reduces28

reliability and increases development and maintenance costs.29

Reverse communication is, however, a blunt-force simulation of a well-behaved control structure that30

has been well-known to computer scientists for decades: The coroutine. Coroutines would allow user-31

provided code needed by library procedures more easily to gain access to data of which the library32

procedure is unaware, without causing the disruption of the control structure of the library procedure33

that reverse communication now causes.34

Coroutines are useful to implement iterator procedures, that can be used both to enumerate the elements35

of a data structure and to control iteration of a loop that is processing those elements.36

7 Estimated Impact37

Minor additions to Subclause 2.3.4 and Section 12. Estimated at J3 meeting 169 to be at 5 on the JKR38

scale.39

11 November 2004 Page 1 of 2



11 November 2004 J3/04-380r2

8 Detailed Specification1

Provide two new statements, which we here call SUSPEND and RESUME.2

Provide a new form of subprogram, the coroutine, that cannot contain an ENTRY statement, and is the3

only subprogram in which a SUSPEND statement is allowed. A coroutine requires an explicit interface.4

Coroutines can stand on their own, or be type-bound procedures or actual arguments. They can be5

procedure pointer targets, provided the pointer has explicit interface. Generic coroutines are allowed,6

provided the generic-spec is generic-name. Recursive and internal coroutines are allowed.7

When a coroutine is invoked by a CALL statement, execution continues with the coroutine’s first ex-8

ecutable construct. When a coroutine executes a SUSPEND statement, execution continues after the9

CALL or RESUME statement that initiated or resumed its execution; when a RESUME statement is10

executed, execution resumes after the SUSPEND statement. When a coroutine executes a RETURN or11

END statement, execution continues after the CALL or RESUME statement that initiated or resumed12

its execution, and it is an error if one later attempts to RESUME it without first calling it.13

A type-bound coroutine shall be initiated using a variable, and resumed using the same variable. A14

coroutine that is initiated using a pointer shall be resumed using the same pointer. Otherwise, a15

coroutine shall be resumed from the same scoping unit in which it is initiated.16

8.1 Data entities17

Variables within a coroutine can have the SAVE attribute, with the usual implications.18

Unsaved local variables within a coroutine retain their definition status and values from SUSPEND19

to RESUME. Automatic objects in addition retain their bounds and length parameter values. The20

specification part is not elaborated upon resumption. If a coroutine references a module or common21

block, it is considered to continue to reference it between SUSPEND and RESUME.22

A change in the value of a variable between SUSPEND and RESUME does not affect the bounds or23

length parameter values of automatic variables within the coroutine.24

Argument association does survive execution of a SUSPEND statement.25

8.2 Activation records26

The above rules guarantee that coroutines can be reentrant. The following paragraphs suggest one way27

to implement those rules.28

When a coroutine suspends execution by executing a SUSPEND statement, its activation record is saved.29

When a coroutine is resumed, its activation record is restored. Therefore there is no restriction on where30

a SUSPEND statement is allowed to appear among the executable constructs.31

A type-bound coroutine’s activation record is saved in and restored from an extension of the variable by32

which its execution is initiated or resumed, i.e., in X, if it is referenced as X%C. If a coroutine is accessed33

by a procedure pointer, its activation record is saved in the pointer. Otherwise, the processor stores the34

activation record locally (so CALL and RESUME have to be in the same scoping unit).35

9 History36

03-258r1, section 1.1 m166
04-149r1 m167
04-345 m169
04-380r1 m170

11 November 2004 Page 2 of 2


