
23 September 2003 J3/04-383

Subject: Parameterized module facility
From: Van Snyder
Reference: 03-264r1, 04-153

1 Number1

TBD2

2 Title3

Parameterized module facility4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide a facility whereby a module or subprogram can be developed in a generic form, and then applied10

to any appropriate type.11

6 Rationale12

Many algorithms can be applied to more than one type. Many algorithms that can only be applied to13

one type can be applied to more than one kind. It is tedious, expensive, and error prone — especially14

during maintenance — to develop algorithms that are identical except for type declarations to operate15

on different types or kinds.16

Generic modules are useful to package types together with their type-bound procedures, so that when17

they are instantiated, they are consistent. This cannot be guaranteed for parameterized types.18

7 Estimated Impact19

Moderate to extensive, depending on how it’s done. The solution proposed here can be implemented20

mostly with changes in Section 11, and perhaps a few changes in Section 4. Estimated at J3 meeting21

169 to be at 6 on the JKR scale.22

8 Detailed Specification23

Provide a variety of module called a generic module. A generic module is a template or pattern for24

generating specific instances. It has generic parameters but is otherwise structurally similar to a25

nongeneric module. A generic parameter can be a type, a data object, a procedure, a generic interface,26

a nongeneric module, or a generic module.27

By substituting concrete values for its generic parameters, one can create an instance of a generic28

module. Entities from generic modules cannot be accessed by use association. Rather, entities can be29

accessed from instances of them. Instances of generic modules have all of the properties of nongeneric30

modules, except that they are always local entities of the scoping units in which they are instantiated.31

Provide a means to create instances of generic modules by substituting concrete values for their generic32

parameters33

Provide a means to access entities from instances of generic modules by use association.34

It is proposed at this time that generic modules do not have submodules.35

23 September 2003 Page 1 of 9

23 September 2003 J3/04-383

8.1 Priority for features1

The features of generic modules depend primarily upon what varieties of entities are allowed as generic2

parameters.3

The priority of what should be allowed for generic parameters and their corresponding instance param-4

eters is, with most important first:5

Generic parameter Associated instance parameter
Type Type
Data entity Initialization expression

Variable
Specific procedure Specific procedure
Generic interface Generic interface
Non-generic module Non-generic module
Generic module Generic module

To fit the proposal within the development schedule, it may be necessary to reduce the present scope of6

the proposal. If so, less-important features should be removed before more-important ones.7

8.2 Definition of a generic module — general principles8

A generic module may stand on its own as a global entity, or may be a local entity defined within a9

program, module or subprogram. It shall not be defined within another generic module. If it is defined10

within another scoping unit, instances of it access that scoping unit by host association. This is useful11

if a particular scoping unit is the only place where it’s needed, or if instances need to share an entity12

such as a type, procedure or variable.13

A second axis of simplification is to prohibit generic modules to be defined within other scoping units.14

If this is prohibited, instances should nonetheless not access scoping units where they are instantiated15

by host association, so as to preserve the possibility to extend to the functionality described here at a16

later time.17

The MODULE statement that introduces a generic module differs from one that introduces a nongeneric18

module by having a list of generic parameter names.19

The interface of a generic module is the list of the sets of characteristics of its generic parameters. The20

interface shall be explicitly declared, that is, the variety of entity of each generic parameter, and the21

characteristics required of its associated actual parameter when an instance is created, shall be declared.22

There shall be no optional parameters. Generic parameters and their associated instance parameters are23

described in detail in section 8.4 below.24

Other than the appearance of generic parameters in the MODULE statement, and their declarations,25

generic modules are structurally similar to nongeneric modules, as defined by R1104, although it may26

be necessary to relax statement-ordering restrictions a little bit.27

8.3 Instantiation of a generic module and use of the instance — general principles28

An instance of a generic module is created by the appearance of a USE statement that refers to that29

generic module, and provides concrete values for each of the generic module’s generic parameters. These30

concrete values are called instance parameters. The instance parameters in the USE statement31

correspond to the module’s generic parameters either by position or by name, in the same way as for32

arguments in procedure references or component specifiers in structure constructors. The characteristics33

of each instance parameter shall be consistent with the corresponding generic parameter.34

By substituting the concrete values of instance parameters for corresponding generic parameters, an35

instance of a generic module is created, or instantiated. An instance of a generic module is a module,36

but it is a local entity of the scoping unit where it is instantiated. It does not, however, access by host37

association the scoping unit where it is instantiated. Rather, it accesses by host association the scoping38

unit where the generic module is defined.39

23 September 2003 Page 2 of 9

23 September 2003 J3/04-383

Each local entity within an instance of a generic module is distinct from the corresponding entity in a1

different instance, even if both instances are instantiated with identical instance parameters.2

A generic module shall not be an instance parameter of an instance of itself, either directly or indirectly.3

A generic module may be instantiated and accessed in two ways.4

• By instantiating it and giving it a name, and then accessing entities from the named instance by5

use association. Named instances are created by a USE statement of the form6

USE :: named-instance-specification-list7

where a named-instance-specification is of the form instance-name => instance-specification, and8

instance-specification is of the form generic-module-name (instance-parameter-list). In this case,9

the only-list and rename-list are not permitted — since this does not access the created instance10

by use association.11

Entities are then accessed from those instances by USE statements that look like R1109, but with12

module-name replaced by instance-name.13

• By instantiating it without giving it a name, and accessing entities from that instance within the14

same statement. In this case, the USE statement looks like R1109, but with module-name replaced15

by instance-specification.16

In either case, a module-nature could either be prohibited, or required with a new value such as GENERIC17

or INSTANCE.18

Alternatively, a new statement such as INSTANTIATE might be used instead of the above-described19

variations on the USE statement, at least in the named-instance case. In the anonymous-instance case20

it would be desirable to use the USE statement, to preserve functionality of rename-list and only-list21

without needing to describe them all over again for a new statement.22

Since instances are essentially modules, but are always local entities within the program units where23

they are instantiated, it seems fatuous to prohibit nongeneric modules within other program units. It24

would be reasonable to limit the nesting depth, as we do for subprograms. For example, it would be25

reasonable to prohibit either a generic module or a nongeneric module to be defined within an internal26

or generic module.27

8.4 Generic parameters and associated instance parameters28

A generic parameter may be a type, a data entity, a specific procedure, a generic interface, a nongeneric29

module, or a generic module.30

Declarations of generic parameters may depend upon other generic parameters, but there shall not be31

a circular dependence between them, except by way of pointer or allocatable components of generic32

parameters that are types.33

8.4.1 Generic parameters as types34

If a generic parameter is a type, it shall be declared by a type definition having the same syntax as a35

derived type definition. The type definition may include component definitions. The types and type36

parameters of the components may themselves be specified by other generic parameters. The type37

definition may include type-bound procedures. Characteristics of these type-bound procedures may38

depend upon generic parameters.39

If the generic parameter is a type, the corresponding instance parameter shall be a type. If the generic40

parameter has components, the instance parameter shall at least have components with the same names,41

types, type parameters and ranks. If the generic parameter has type parameters, the instance parameter42

shall at least have type parameters with the same names and attributes. Type parameters of the instance43

parameter that correspond to type parameters of the generic parameter shall be specified by a colon,44

as though they were deferred in an object of the type — even if they are KIND parameters, and any45

others shall have values given by initialization expressions. If the generic parameter has type-bound46

specific procedures or type-bound generics, the corresponding instance parameter shall at least have47

23 September 2003 Page 3 of 9

23 September 2003 J3/04-383

type-bound specifics and generics that are consistent, except that if a specific procedure binding to the1

generic parameter has the ABSTRACT attribute the instance parameter need not have a specific binding2

of the same name because it is only used to provide an interface for a generic binding; it shall not be3

accessed by the specific name. Instance parameters that are intrinsic types shall be considered to be4

derived types with no accessible components. Intrinsic operations and intrinsic functions are available5

in every scoping unit, so it is not necessary to assume that intrinsic operations and intrinsic functions6

are bound to the type.7

8.4.2 Generic parameters as data objects8

If a generic parameter is a data object, it shall be declared by a type declaration statement. Its type and9

type parameters may be generic parameters. If it is necessary that the actual parameter to be provided10

when the generic module is instantiated shall be an initialization expression, the generic parameter shall11

have the KIND attribute, no matter what its type — even a type specified by another generic parameter.12

If the generic parameter is a data object, the corresponding instance parameter’s type, kind and rank13

shall be the same as specified for the generic parameter.14

If the generic parameter is a data object with the KIND attribute, the corresponding instance parameter15

shall be an initialization expression.16

If the generic parameter is a data object without the KIND attribute, the corresponding instance param-17

eter shall be a variable. Every expression within the variable shall be an initialization expression. The18

instance has access to the variable by some newly-defined variety of association (or maybe by storage19

association) — instantiation does not create a new one with the same characteristics.20

8.4.3 Generic parameters as procedures or generic interfaces21

If a generic parameter is a procedure or a generic interface, its interface shall be declared explicitly. Its22

characteristics may depend upon generic parameters.23

If the generic parameter is a procedure, the corresponding instance parameter shall be a procedure having24

characteristics consistent with the interface for the generic parameter, which interface may depend upon25

other generic parameters.26

If the generic parameter is a generic interface, the corresponding instance parameter shall be a generic27

identifier, whose interface shall have at least specifics consistent with specific interfaces within the generic28

parameter’s generic interface. The instance parameter need not have the same generic identifier as29

the generic parameter. If a specific interface within the generic parameter’s generic interface has the30

ABSTRACT attribute, the instance parameter need not have a specific procedure with the same name,31

but it shall have a specific procedure with the same characteristics. In this case, the specific procedure32

within the generic parameter’s generic interface cannot be accessed by the specified name as a specific33

procedure, either within an instance or from one by use association.34

8.4.4 Generic parameters as generic or nongeneric modules35

If a generic parameter is a generic module, The interface of that parameter shall be declared.36

If the generic parameter is a generic module, the corresponding instance parameter shall be a generic37

module, having an interface consistent with the generic parameter.38

If the generic parameter is a nongeneric module, the corresponding instance parameter shall be a non-39

generic module, which may be an internal module or an instance of a generic module.40

8.5 Instantiation of a generic module and use of the instance — fine points41

If a generic module is defined within a module, it can have the PRIVATE attribute. This means it42

cannot be accessed by use association, which in turn means that it cannot be instantiated outside of43

the module where it is defined. Rather, it will be instantiated some fixed number of times within that44

module, which instances might or might not be accessible by use association. A similar situation holds,45

of course, if a generic module is defined within a scoping unit that is not a module.46

If the generic module is an internal generic module, it shall be accessible in the scoping unit where47

the USE statement that instantiates it appears. This may require that it be made available by USE48

23 September 2003 Page 4 of 9

23 September 2003 J3/04-383

association from a module within which it is defined. That is, two USE statements may be necessary:1

One to access the generic module, and another to instantiate it.2

If a generic module has a generic parameter that is a generic module, and the generic parameter is public,3

four USE statements might appear: One to access the generic module, one to instantiate it, one to access4

the generic parameter that is a generic module from that instance, and yet another to instantiate that5

generic module. This could be prohibited, for example by prohibiting generic parameters that are generic6

modules to be public, but why?7

An instance parameter is accessible by use association from an instance of a generic module by using8

the identifier of the corresponding generic parameter, unless the generic parameter’s identifier is private.9

Where a module is instantiated, the only and renaming facilities of the USE statement can be used10

as well. Processors could exploit an only-list to avoid instantiating all of a module if only part of it11

is ultimately used. Suppose for example that one has a generic BLAS module from which one wants12

only a double-precision L2-norm routine. One might write use BLAS(kind(0.0d0)), only: DNRM2 =>13

GNRM2, where GNRM2 is the specific name of the L2-norm routine in the generic module, and DNRM2 is14

the local name of the double-precision instance of it created by instantiating the module. If only is not15

used, every entity in the module is instantiated, and all public entities are accessed from the instance16

by use association, exactly as is currently done for a USE statement without an only-list .17

If a named instance is created, access to it need not be in the same scoping unit as the instantiation; it18

is only necessary that the name of the instance be accessible. Indeed, the instance might be created in19

one module, its name accessed from that module by use association, and entities from it finally accessed20

by use association by way of that accessed name.21

8.6 Examples of proposed syntax for definition22

8.6.1 Sort module hoping for < routine23

Here’s an example of the beginning of a generic sort module in which the processor can’t check that24

there’s an accessible < operator with an appropriate interface until the generic module is instantiated.25

There’s no requirement on the parameters of the generic type MyType. The only way the instance can26

get the < routine is if it is intrinsic, by host association from the scoping unit where the generic module27

is defined, or if it is bound to the type given by the instance parameter (recall that instances do not28

access by host association the scoping unit where they’re instantiated). Aleks advocates that this one is29

illegal, at least in part because similar semantics in C++ templates cause trouble.30

module Sorting (MyType)31

type :: MyType32

end type MyType33

....34

8.6.2 Sort module with < specified by module parameter generic interface35

The < operator is given by a generic parameter. When the module is instantiated, a generic identifier36

for an interface with a specific consistent with the less shown here, shall be provided as an instance37

parameter.38

module SortingP (MyType, Operator(<))39

type :: MyType40

end type MyType41

interface operator (<)42

pure logical abstract function Less (A, B) ! "less" is purely an abstraction43

type(myType), intent(in) :: A, B44

end function Less45

end interface46

....47

23 September 2003 Page 5 of 9

23 September 2003 J3/04-383

The ABSTRACT attribute for the less function means that the associated instance parameter for1

operator(<) only needs to have a specific with the specified interface, but the name isn’t required to2

be less. Indeed, less can’t be accessed by that name within SortingP or by use association from an3

instance of SortingP.4

The instance parameter corresponding to operator(<) need not have the same generic identifier. For5

example, if it’s operator(>) (with the obvious semantics), the instantiated sort routine would sort into6

reverse order.7

8.6.3 Sort module with < specified by type-bound generic interface8

This illustrates a generic parameter that is a type that is required to have a particular type-bound9

generic. The type shall have a type-bound generic with a particular interface, but if entities are declared10

by reference to the name MyType or a local name for it after it is accessed from an instance, the specific11

type-bound procedure cannot be invoked by name; it can only be accessed by way of the type-bound12

generic. The abstract attribute does this. It’s only allowed in the definitions of types that are generic13

parameters.14

module SortingTBP (MyType)15

type :: MyType16

contains17

procedure(less), abstract :: Less ! Can’t do "foobar%less". "Less" is only18

! a handle for the interface for the "operator(<)" generic19

generic operator(<) => Less ! Type shall have this generic operator20

end type MyType21

! Same explicit interface for "less" as in previous example22

....23

8.6.4 Module with type having at least a specified component24

module LinkedLists (MyType)25

type :: MyType26

type(myType), pointer :: Next! "next" component is required.27

! Type is allowed to have other components, and TBPs.28

end type MyType29

....30

8.6.5 Module with type having separately-specified kind parameter31

module LinkedLists (MyType, ItsKind)32

type :: MyType(itsKind)33

integer, kind :: itsKind34

end type MyType35

integer, kind :: ItsKind36

....37

8.6.6 BLAS definition used in instantiation examples in 8.738

module BLAS (KIND)39

integer, kind :: KIND40

interface NRM2; module procedure GNRM2; end interface NRM241

....42

contains43

pure real(kind) function GNRM2 (Vec)44

....45

8.6.7 Ordinary module with private instance count and internal generic module46

module ModuleWithInternalGeneric47

23 September 2003 Page 6 of 9

23 September 2003 J3/04-383

integer, private :: HowManyInstances1

module InternalGeneric (MyType)2

! Instances of InternalGeneric access HowManyInstances by host association3

....4

8.7 Examples of proposed syntax for instantiation5

8.7.1 Instantiating a stand-alone generic module6

Instantiate a generic module BLAS with kind(0.0d0) and access every public entity from the instance:7

use BLAS(kind(0.0d0))8

Instantiate a generic module BLAS with kind(0.0d0) and access only the GNRM2 function from the9

instance:10

use BLAS(kind(0.0d0)), only: GNRM211

Instantiate a generic module BLAS with kind(0.0d0) and access only the GNRM2 function from the12

instance, with local name DNRM2:13

use BLAS(kind(0.0d0)), only: DNRM2 => GNRM214

8.7.2 Instantiate within a module, and then use from that module15

This is the way to get only one single-precision and only one double-precision instance of BLAS; instan-16

tiating them wherever they are needed results in multiple instances. This also illustrates two ways to17

make generic interfaces using specific procedures in generic modules. The first one creates the generic18

interface from specific procedures accessed from the instances:19

module DBLAS20

use BLAS(kind(0.0d0))21

end module DBLAS22

module SBLAS23

use BLAS(kind(0.0e0))24

end module SBLAS25

module B26

use DBLAS, only: DNRM2 => GNRM227

use SBLAS, only: SNRM2 => GNRM228

interface NRM229

module procedure DNRM2, SNRM230

end interface31

end module B32

In the second one the generic module has the generic interface named NRM2 that includes the GNRM233

specific:34

module DBLAS35

use BLAS(kind(0.0d0))36

end module DBLAS37

module SBLAS38

use BLAS(kind(0.0e0))39

end module SBLAS40

module B41

use DBLAS, only: NRM2 ! Generic; GNRM2 specific not accessed42

use SBLAS, only: NRM2, & ! Generic43

& SNRM2 => GNRM2 ! Specific44

end module B45

23 September 2003 Page 7 of 9

23 September 2003 J3/04-383

8.7.3 Instantiate and access twice in one scoping unit, augmenting generic interface1

module B2

use BLAS(kind(0.0d0)), only: NRM2 ! Generic; GNRM2 specific not accessed3

use BLAS(kind(0.0e0)), only: NRM2, & ! Generic NRM2 grows here4

& SNRM2 => GNRM2 ! Specific5

end module B6

The method in 8.7.2 above might be desirable so as not accidentally to have multiple identical instances7

of BLAS in different scoping units.8

8.7.4 Instantiate and give the instance a name, then access from it9

! Instantiate BLAS with kind(0.0d0) and call the instance DBLAS, which is10

! a local module.11

use :: DBLAS => BLAS(kind(0.0d0))12

! Access GNRM2 from the instance DBLAS and call it DNRM2 here13

use DBLAS, only: DNRM2 => GNRM214

8.7.5 Instantiate two named instances in one module, then use one elsewhere15

module BlasInstances16

! Instantiate instances but do not access from them by use association17

use :: DBLAS => BLAS(kind(0.0d0)), SBLAS => BLAS(kind(0.0d0))18

end module BlasInstances19

module NeedsSBlasNRM220

use BlasInstances, only: SBLAS ! gets the SBLAS instance module, not its contents21

use SBLAS, only: SNRM2 => GNRM2 ! Accesses GNRM2 from SBLAS22

end module NeedsSBlasNRM223

8.7.6 Instantiate sort module with generic interface instance parameter24

type :: OrderedType25

...26

end type OrderedType27

interface operator (<)28

pure logical function Less (A, B)29

type(orderedType), intent(in) :: A, B30

end function Less31

end interface32

! Notice relaxed statement ordering.33

use SortingP(orderedType,operator(<)), only: OrderedTypeQuicksort => Quicksort34

....35

8.7.7 Instantiate sort module with TBP Less36

use SortingTBP(real(kind(0.0d0))), only: DoubleQuicksort => Quicksort37

Notice that this depends on < being a “type-bound generic” that is bound to the intrinsic double38

precision type. Here’s one with a user-defined type that has a user-defined type-bound < operator.39

type MyType40

! My components here41

contains42

procedure :: MyLess => Less43

generic operator (<) => myLess44

end type MyType45

46

use SortingTBP(myType), only: MyTypeQuicksort => Quicksort47

23 September 2003 Page 8 of 9

23 September 2003 J3/04-383

The interface for less is given in 8.6.2.1

Notice that the USE statement comes after the type definition and the TBP’s function definition.2

8.8 Example of consistent type and TBP3

This example illustrates how to create a type with type-and-kind consistent type-bound procedures, for4

any kind. This cannot be guaranteed by using parameterized types.5

module SparseMatrices (Kind)6

integer, kind :: Kind7

type Matrix8

! Stuff to find nonzero elements...9

real(kind) :: Element10

contains11

procedure :: FrobeniusNorm12

....13

end type14

15

contains16

subroutine FrobeniusNorm (TheMatrix, TheNorm)17

type(matrix), intent(in) :: TheMatrix18

real(kind), intent(out) :: TheNorm19

....20

end subroutine FrobeniusNorm21

....22

end module SparseMatrices23

24

....25

26

use SparseMatrices(selected_real_kind(28,300)), & ! Quad precision27

& only: QuadMatrix_T => Matrix, QuadFrobenius => Frobenius, &28

& QuadKind => Kind ! Access instance parameter by way of generic parameter29

30

....31

32

type(quadMatrix_t) :: QuadMatrix33

real(quadKind) :: TheNorm34

35

....36

37

call quadFrobenius (quadMatix, theNorm)38

8.9 Unfinished business39

Within an instance, what is the accessibility of a component or TBP of a generic parameter that is a40

type? The same as its accessibility where the instance is created?41

If an instance parameter is private, can it be accessed from the instance by way of its corresponding42

public generic parameter identifier? Yes — because accessibility attributes apply only to names, not43

entities.44

What about polymorphic parameters?45

Should ALLOCATABLE and POINTER work like they do for procedure arguments? Yes.46

23 September 2003 Page 9 of 9

