
8 September 2004 J3/04-384

Subject: Updating complex parts
From: Van Snyder
Reference: 03-258r1, section 2.2.5, 04-225

1 Number1

TBD2

2 Title3

Updating complex parts4

3 Submitted By5

J36

4 Status7

For consideration.8

5 Basic Functionality9

Provide a syntax that allows to update the real and imaginary parts of a complex variable without10

updating the whole thing.11

6 Rationale12

It’s not unusual to need to do this.13

7 Estimated Impact14

Very minor. Estimated at meeting 169 to be 4 on the JKR scale.15

8 Detailed Specification16

There are at least two ways to do this. One is to use a syntax similar to function reference, but allowed17

in variable-definition contexts. Another is to use a syntax similar to component reference, both in18

value-reference and variable-definition contexts.19

8.1 Function-like syntax20

Define a new variety of intrinsic procedure, the accessor. This is a procedure that can produce a21

value when invoked in a value-reference context, or can “absorb” a value and update (some or all of)22

its argument(s) when invoked in a variable-definition context. The argument(s) that is (are) updated23

have INTENT(OUT) or INTENT(INOUT), so the actual arguments can’t be expressions, and can’t be24

prohibited to appear in variable-definition contexts.25

The following intrinsic procedures would be useful accessors. Their behavior in the case when they26

are invoked in a variable-definition context is described here. Their behavior when invoked in a value-27

reference context would not be affected. The equivalent behavior shown below could frequently result28

in construction of an array temp, so this proposal might have some performance benefits.29

Accessors cannot be actual arguments because that would essentially entail providing for user-defined30

accessors.31

8 September 2004 Page 1 of 2

8 September 2004 J3/04-384

Name Functionality
ABS Update the magnitude of a variable. For a noncomplex variable,

abs(x) = y is equivalent to x = sign(y,x). For a complex variable,
abs(x) = y is equivalent to temp = atan2(aimag(x),real(x)); x = abs(y) *
cmplx(cos(temp),sin(temp)). This is mathematically equivalent to abs(y) * x
/ abs(x), but it is necessary to take care of the case that x == 0.0.

AIMAG Update the imaginary part of a variable. aimag(x) = y is equivalent to, but prob-
ably cheaper than x = cmplx(real(x),y)).

EXPONENT Update the exponent part of a floating-point variable. exponent(x) = j is equiv-
alent to x = set exponent (fraction(x), j).

FRACTION Update the fraction part of a floating-point variable. fraction(x) = y is equivalent
to x = set exponent (y, exponent(x)).

IBITS Update bits POS through POS + LEN − 1 of I. ibits(i,pos,len) =
j is equivalent to call mvbits (j, 0, len, i, pos). call mvbits (j,
frompos, len, i, topos) is equivalent to ibits (i, topos, len) = ibits
(j, frompos, len).

MERGE Update TSOURCE or FSOURCE depending on MASK. merge(x,y,m) = z is
equivalent to where (m); x = z; elsewhere; y = z; endwhere, or an equiv-
alent IF construct if x, y, and m are scalars.

REAL Update the real part of a complex variable. The KIND argument is not permitted
(because it would be nonsense). real(x) = y is equivalent to, but probably cheaper
than x = cmplx(y,aimag(x)).

It is conceivable that updating behavior could be defined for PACK and UNPACK.1

8.2 Component-like syntax2

Specify that the real and imaginary parts of a complex variable can be accessed by using component-like3

syntax, with “component” names REAL and AIMAG. It might be possible simply to define COMPLEX4

to be a SEQUENCE derived type with components named, say, REAL and AIMAG, in that order,5

because C424 prohibits other definitions of COMPLEX, with or without the same components in the6

same order. A user-defined type therefore could not be “equivalent” to COMPLEX but without the7

requisite behavior.8

It is conceivable that the rest of the above, except for IBITS and MERGE, could be done using9

component-like syntax, but they could not be done simply by defining an intrinsic type to be a se-10

quence derived type. The function-like syntax is more powerful, and has an obvious generalization to11

user-defined procedures.12

9 History13

8 September 2004 Page 2 of 2

