Subject: More mathematical functions
From: Van Snyder

1 Number
 TBD

2 Title

More mathematical functions.

3 Submitted By

J3

4 Status

For consideration.

5 Basic Functionality

More mathematical functions.

6 Rationale

Mathematical functions for complex type are occasionally needed. The only ones that are available for complex type are ABS, COS, EXP, LOG and SIN. The other mathematical functions that are provided for real type are useful in practice for complex type as well. Inverse hyperbolic functions and other functions are useful. Simple identities for complex argument exist, but it is a burden to expect users to look them up, and processors might be able to produce more efficient implementations. For inverse hyperbolic functions, there are simple identities involving square root and logarithm, but these can have substantial cancellation error for some ranges of values, so it is important to be careful in their implementation. Processors would presumably include careful intrinsic implementations of these functions.

7 Estimated Impact

Minor but tedious. Estimated at meeting 169 to be 4 on the JKR scale.

8 Detailed Specification

Provide ACOS, ASIN, ATAN, COSH, SINH, TAN and TANH for complex type. Provide inverse hyperbolic functions, including for complex type. In the case of TAN, specify that the real part of the argument is regarded as a value in radians.

8.1 Suggested edits

The following edits are proposed only for the purpose of indicating the scope of the project.

ACOSH (X)	Inverse hyperbolic cosine	$294: 25+$
ASINH (X)	Inverse hyperbolic sine	$294: 26++$
ATANH (X)	Inverse hyperbolic tangent	$294: 27+$
[Editor: Add the following three items to the list in alphabetical order:]	$298: 16$	
ACOSH	ACOSH	default real

ASINH	ASINH	default real
ATANH	ATANH	default real

[Editor: after "1" insert ", or of type complex".]	301:10
13.7.3 $\frac{1}{2}$ ACOSH (X)	301:14+
Description. Inverse hyperbolic cosine function.	
Class. Elemental function.	
Argument. X shall be of type real or complex.	
Result Characteristics. Same as X.	
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic cosine function of X.	
Example. ACOSH (1.5430806) has the value 1.0 (approximately).	
[Editor: after "1" insert ", or of type complex".]	304:14
13.7.12 $\frac{1}{2}$ ASINH (X)	304:18+
Description. Inverse hyperbolic sine function.	
Class. Elemental function.	
Argument. X shall be of type real or complex.	
Result Characteristics. Same as X.	
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic sine function of X.	
Example. ASINH (1.1752012) has the value 1.0 (approximately).	
[Editor: after "real" insert "or complex".]	305:31
13.7.15 $\frac{1}{2}$ ATANH (X)	306:13+

Description. Inverse hyperbolic tangent function.
Class. Elemental function.
Argument. X shall be of type real or complex.
Result Characteristics. Same as X.
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic tangent function of X.
Example. ATANH (0.76159416) has the value 1.0 (approximately).
[Editor: after "real" insert "or complex".]
[Editor: after "real" insert "or complex".]
[Editor: after "real" insert "or complex".]
[Editor: ", with $\mathrm{X} \ldots$ radians" \Rightarrow ". If X is of type real, it is regarded as a value in radians. If X is of $355: 18-19$ type complex, its real part is regarded as a value in radians".]
[Editor: after "real" insert "or complex".]

9 History

03-258r1, section 2.4.4.3 m166
04-184r1
m167

