Subject: Edits for more mathematical functions
From: Van Snyder
Reference: 04-388r1, WG5/N1626-J3-019

1 Edits

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a page and line number or line number range implies all of the indicated text is to be replaced by associated text, while a page and line number followed by $+(-)$ indicates that associated text is to be inserted after (before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.

$[$ Editor: Add the following three summaries in 13.5.2 Mathematical functions in alphabetical order:] ACOSH (X)	$294: 25+$	
ASINH (X)	Inverse hyperbolic cosine	$294: 26++$
ATANH (X)	Inverse hyperbolic sine	$294: 27+$

[Editor: Add the following six items to the list in 13.6 Specific names for standard intrinsic functions 298:16 in alphabetical order:]

ACOSH	ACOSH	default real
ASINH	ASINH	default real
ATANH	ATANH	default real
DACOSH	ACOSH	double precision real
DASINH	ASINH	double precision real
DATANH	ATANH	double precision real

[Editor: At the end of the Argument paragraph of 13.7.3 ACOS (X), after "1" insert ", or of type 301:10 complex".]
[Editor: At the end of the Result value paragraph of 13.7.3 ACOS (X), "It" \Rightarrow If the result is real 301:13 it". At the end of the paragraph insert another sentence "If the result is complex the real part lies in the range $0 \leq \operatorname{REAL}(\operatorname{ACOS}(\mathrm{X})) \leq \pi$."]

13.7.3 $\frac{1}{2}$ ACOSH (X)

Description. Inverse hyperbolic cosine function.
Class. Elemental function.
Argument. X shall be of type real or complex.
Result Characteristics. Same as X.
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic cosine function of X . If the result is complex the imaginary part lies in the range $0 \leq \operatorname{AIMAG}(\operatorname{ACOSH}(\mathrm{X})) \leq \pi$.
Example. ACOSH (1.5430806) has the value 1.0 (approximately).
[Editor: At the end of the Argument paragraph of 13.7.12 ASIN (X), after "1" insert ", or of type 304:14 complex".]
[Editor: At the end of the Result value paragraph of 13.7.12 ASIN (X), "It" \Rightarrow If the result is real 304:17 it". At the end of the paragraph insert another sentence "If the result is complex the real part lies in the range $\left.-\frac{\pi}{2} \leq \operatorname{REAL}(\operatorname{ASIN}(\mathrm{X})) \leq \frac{\pi}{2} . "\right]$

13.7.12 $\frac{1}{2}$ ASINH (X)

Description. Inverse hyperbolic sine function.

Class. Elemental function.
Argument. X shall be of type real or complex.
Result Characteristics. Same as X.
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic sine function of X. If the result is complex the imaginary part lies in the range $-\frac{\pi}{2} \leq \operatorname{AIMAG}(\operatorname{ASINH}(\mathrm{X})) \leq \frac{\pi}{2}$.
Example. ASINH (1.1752012) has the value 1.0 (approximately).
[Editor: At the end of the Argument paragraph of 13.7.14 ATAN (X), after "real" insert "or complex".]
[Editor: At the end of the Result value paragraph of 13.7.14 ATAN (X), ", expressed in radians, that" \Rightarrow ". If the result is complex, it is expressed in radians and". Insert another sentence at the end of the paragraph "If the result is complex the real part is expressed in radians and lies in the range $-\frac{\pi}{2} \leq$ $\left.\operatorname{REAL}(\operatorname{ATAN}(X)) \leq \frac{\pi}{2} . "\right]$

13.7.15 $\frac{1}{2}$ ATANH (X)

Description. Inverse hyperbolic tangent function.
Class. Elemental function.
Argument. X shall be of type real or complex.
Result Characteristics. Same as X.
Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic tangent function of X . If the result is complex the imaginary part is expressed in radians and lies in the range $-\frac{\pi}{2} \leq \operatorname{AIMAG}(\operatorname{ATANH}(\mathrm{X})) \leq \frac{\pi}{2}$.
Example. ATANH (0.76159416) has the value 1.0 (approximately).
[Editor: At the end of the Argument paragraph of 13.7.24 COSH (X), after "real" insert "or complex".] 309:7
[Editor: At the end of the Result value paragraph of 13.7.24 COSH (X), insert a sentence "If X is of 309:9 type complex its imaginary part is regarded as a value in radians."]
[Editor: At the end of the Argument paragraph of 13.7.111 SINH (X), after "real" insert "or complex".] 352:15
[Editor: At the end of the Result value paragraph of 13.7.111 SINH (X), insert a sentence "If X is of 352:17 type complex its imaginary part is regarded as a value in radians."]
[Editor: At the end of the Argument paragraph of 13.7.118 TAN (X), after "real" insert "or complex".] 355:16
[Editor: At the end of the Result value paragraph of 13.7.118 TAN (X), ", with X . . radians" \Rightarrow ". 355:18-19
If X is of type real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians".]
[Editor: At the end of the Argument paragraph of 13.7.119 TANH (X), after "real" insert "or com- 355:24 plex".]
[Editor: At the end of the Result value paragraph of 13.7.119 TANH (X), insert a sentence "If X is 355:26 of type complex its imaginary part is regarded as a value in radians."]

