Subject:Intrinsic math functionsFrom:Van SnyderReference:05-248r3

1 **1** Introduction

2 As specified in 05-248r3, the HYPOT function a is nearly useless, and ERFC and LOG_GAMMA are
3 suboptimal.

4 **1.1 HYPOT**

The HYPOT function specified in 05-248r3 is nearly useless, since (1) it's identical to CABS, and (2) 5 6 the interesting function in any case is the one that computes the L_2 norm of a vector of any length, not just length 2. Instead of HYPOT we ought to add the NRM2 functions from the BLAS, with 7 the generic name TBD. Once one has CABS (or indeed NRM2) one needs only a statement function 8 to have a HYPOT spelling. Presumably, if the length is given by an initialization expression, and 9 happens to be two, a decent processor will optimize NRM2 just as well as it would HYPOT — or 10 maybe it won't if HYPOT isn't in the SPEC benchmark. Either HYPOT or NRM2 can be done with 11 12 SQRT(DOT_PRODUCT(A,A)), but a carefully-done L_2 norm function (e.g., the one in the BLAS) will not experience an overflow in the calculation of an intermediate result unless the final result overflows. 13

14 **1.2 ERFC**

The ERFC function specified in 05-248r3 is not the most useful specification for that functionality. ERFC is asymptotic to $\exp(-x^2)/(x\sqrt{\pi})$, and as such underflows for $x >\approx 9$ in IEEE single precision. The expression $\exp(x^2)\operatorname{erfc}(x)$, which doesn't underflow until $x > \operatorname{HUGE}(x)/\sqrt{\pi}$, appears more frequently in statistical calculations. Real math function libraries (as opposed to libm) frequently include a "scaled erfc" function, frequently called ERFCE, that computes $\exp(x^2)\operatorname{erfc}(x)$. Where carefully done, imple-

20 mentations of this function do not experience overflow of intermediate or final results for any positive

21 X, and intermediate or final results underflow only for $x > \text{HUGE}(x)/\sqrt{\pi}$. It is not computed by com-22 puting erfc(x) and multiplying by $\exp(x^2)$, as a naive user might be tempted to do — especially if all we 23 provide is the functionality presently specified in 05-248r3. $\exp(x^2)$ would overflow for $x \gg 9$ in IEEE

25 provide is the functionality presently specified in 05-24613. $\exp(x^2)$ would overnow for x > 0 in FEEE 24 single precision, and $\operatorname{erfc}(x)$ would underflow around the same value, so multiplying the results of those

25 functions would produce nonsense for $x \gg 9$.

26 **1.3 LOG_GAMMA**

The LOG_GAMMA subroutine defined in 05-248r3 will be cumbersome to use in nearly all cases, i.e., when one knows x > 0. It would be better if it were a function that computed $\log(|\Gamma(x)|)$. In the rare case when one cares, one can get the sign of $\Gamma(x)$ as MERGE(1, 2*IAND(INT(-X),1)-1, X>0) or There are two additional alternatives: (1) An additional function that returns a complex result or (2) a COMPLEX optional argument, whose value is required to be a logical initialization expression, that causes LOG_GAMMA to return a complex result if it is present and true. If the result is complex the imaginary part is zero if $\Gamma(x) > 0$, or π if $\Gamma(x) < 0$ — remember Log(-|x|) is just $log(|x|) + i\pi$.

34 **2** Syntax

35 No new syntax and no changes to existing syntax.

36 **3 Edits**

37 Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a

38 page and line number or line number range implies all of the indicated text is to be replaced by associated

39 text, while a page and line number followed by + (-) indicates that associated text is to be inserted after

40 (before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.

41 [Insert into list of Mathematical functions in 13.5.2:]

296:30+

21 September 2005

J3/05-264

1	ERFC (X [, SCALED])		omplementary error function	
2	[Insert into list of Mathematical functions in 13.5.2:] 296			296:33+
3	LOG_GAMMA(X [, COMPLEX])		ogarithm of Gamma function	
4	[or (if alternative definition below is selected):]			
5	LOG_GAMMA (X) Lo	ogarithm of Gamma function	
6	[Insert into list of Array reduction functions in 13.5.12:] 29			299:7+
7	NORM2 (X)	L_2	$_2$ norm of an array	
8	[Insert after 13.7.5 EPSILON (X):] 317:17-			317:17+
9	13.7.5 $rac{1}{2}$ ERFC (X	[, SCALED])		
10	Description. Complementary error function.			
11	Class. Elemental function.			
12	Arguments.			
13	Х	shall be of type real.		
14	SCALED	(optional) shall be of type log	gical.	
15	Result Characteristics. Same as X.			
16	Result Value.			
17 18 19	Case (i):	-	t with the value false, the value of the result timation to the complementary error function,	
20 21 22	Case (ii):	-	alue true, the value of the result is a processor- exponentially-scaled complementary error func-	
23	Examples.			
24	Case (i):	The value of $ERFC(1.0)$ is 0.1572	2992070 (approximately).	
25	Case (ii):	The value of $ERFC(20.0)$ is 0.539	$95865612 \times 10^{-175}$ (approximately).	
26	Case (iii):	The value of ERFC(20.0,SCALE)	D=.TRUE.) is 0.02817434874 (approximately).	

NOTE 13.8 $\frac{1}{2}$

The complementary error function is asymptotic to $\exp(-x^2)/(x\sqrt{\pi})$. As such it underflows for $x \gg 9$ when using single-precision IEEE arithmetic. The exponentially-scaled complementary error function is asymptotic to $1/(x\sqrt{\pi})$. As such it does not underflow until $x > \text{HUGE}(x)/\sqrt{\pi}$.

27 [Insert after 13.7.69 LOGICAL (L [, KIND]):]

13.7.69 $\frac{1}{2}$ LOG_GAMMA (X, [COMPLEX])

29	Description. Principal value of natural logarithm of the Gamma function.		
30	Class. Elemental function.		
31	Arguments.		
32	Х	shall be of type real. Its value shall not be zero or a negative integer. If COMPLEX is absent or present with the value false, X shall be positive.	
33	COMPLEX	(optional) shall be a scalar logical initialization expression.	
34	Result Characteristics.		
35 36		COMPLEX is absent or present with the value false, the result characteristics are the same as X.	

37 Case (ii): If COMPLEX is present with the value true, the result type is complex with the

1	same kind type parameter value as X.
2	Result Value. The result has a value equal to a processor-dependent approximation to
3	$\log_e \Gamma(X).$
4	Examples.
5	Case (i): The value of LOG_GAMMA(0.5) is 0.5723649430 (approximately).
6	Case (ii): The value of LOG_GAMMA(-0.5 , TRUE.) is (1.265512124, 3.141592654) (ap-
7	proximately).

NOTE 13.14 $\frac{1}{2}$

	$\Gamma(x) < 0 \text{ if } x < 0 \text{ and } \lceil x \rceil \text{ is even. In this case, } \operatorname{Log}_e \Gamma(x) = \log_e \Gamma(x) + i\pi.$	l
8	[Alternative definition, to insert after 13.7.69 LOGICAL (L [, KIND]):]	331:31+
9		551.51
10	Description. Natural logarithm of the absolute value of the Gamma function.	
11	Class. Elemental function.	
12	Argument. X shall be of type real. Its value shall not be zero or a negative integer.	
13	Result Characteristics. Same as X.	
14	Result Value. The result has a value equal to a processor-dependent approximation to	1
15	$\log_e \Gamma(X) .$	
16	Examples.	

Case (i): The value of LOG_GAMMA(0.5) is 0.5723649430 (approximately). 17

Case (ii): The value of $LOG_GAMMA(-0.5)$ is 1.265512124 (approximately). 18

NOTE 13.14 $\frac{1}{2}$

 $\Gamma(x) < 0$ if x < 0 and $\lceil x \rceil$ is even. In this case, $\operatorname{Log}_e \Gamma(x) = \operatorname{log}_e |\Gamma(x)| + i\pi$.

[Insert after 13.7.87 NOT (I):] 19

13.7.87 $\frac{1}{2}$ NORM2 (X) 20

- **Description.** L_2 norm of an array. 21
- ${\bf Class.} \ {\rm Transformational \ function.}$ 22
- **Argument.** X shall be of type real. It shall not be a scalar. 23
- **Result Characteristics.** Scalar of the same type and kind type parameter value as X. 24

Result Value. The result has a value equal to a processor-dependent approximation to the L_2 25 norm of X if X is a rank-one array, the Frobenius norm of X if X is a rank-two array, and the 26 generalized L_2 norm of X for higher-rank arrays. In all cases, this is the square root of the sum 27 28 of the squares of all elements.

> Case (i): X is a rank-one array.

$$\text{NORM2}(X) = \sqrt{\sum_{i=1}^{\text{SIZE}(X)} X(i)^2}$$

Case (ii): X is a rank-two array.

$$\operatorname{NORM2}(X) = \sqrt{\sum_{i=1}^{\operatorname{SIZE}(X,1)} \sum_{j=1}^{\operatorname{SIZE}(X,2)} X(i,j)^2}$$

342:6+

Case (n): X is a rank-n array.

$$NORM2(X) = \sqrt{\sum_{i_1=1}^{SIZE(X,1)} \cdots \sum_{i_n=1}^{SIZE(X,n)} X(i_1,\dots,i_n)^2}$$

Examples. 1

2	Case (i):	The value of NORM2 ((/ 3.0, 4.0 /)) is 5.0 (approximately).
3	Case (ii):	The value of NORM2($(/ 1.0, 2.0, 2.0 /)$) is 3.0 (approximately).

- Case (ii): The value of NORM2((/ 1.0, 2.0, 2.0 /)) is 3.0 (approximately).
- 4 5

The value of NORM2((/ (REAL(I), I = 1, N) /)) is SQRT(N**3/3.0 + N**2/2.0 Case (iii): + N/6.0 (approximately).

NOTE 13.16 $\frac{1}{2}$

It is recommended that the processor compute NORM2 in such a way that intermediate results do not overflow unless the final result would overflow.