Subject: Intrinsic math functions
From: Van Snyder
Reference: 05-248r3

1 Introduction

As specified in $05-248 \mathrm{r} 3$, the HYPOT function a is nearly useless, and ERFC and LOG_GAMMA are suboptimal.

1.1 HYPOT

The HYPOT function specified in $05-248 \mathrm{r} 3$ is nearly useless, since (1) it's identical to CABS, and (2) the interesting function in any case is the one that computes the L_{2} norm of a vector of any length, not just length 2. Instead of HYPOT we ought to add the NRM2 functions from the BLAS, with the generic name TBD. Once one has CABS (or indeed NRM2) one needs only a statement function to have a HYPOT spelling. Presumably, if the length is given by an initialization expression, and happens to be two, a decent processor will optimize NRM2 just as well as it would HYPOT - or maybe it won't if HYPOT isn't in the SPEC benchmark. Either HYPOT or NRM2 can be done with SQRT(DOT_PRODUCT $(A, A))$, but a carefully-done L_{2} norm function (e.g., the one in the BLAS) will not experience an overflow in the calculation of an intermediate result unless the final result overflows.

1.2 ERFC

The ERFC function specified in $05-248 \mathrm{r} 3$ is not the most useful specification for that functionality. ERFC is asymptotic to $\exp \left(-x^{2}\right) /(x \sqrt{\pi})$, and as such underflows for $x>\approx 9$ in IEEE single precision. The expression $\exp \left(x^{2}\right) \operatorname{erfc}(x)$, which doesn't underflow until $x>\operatorname{HUGE}(x) / \sqrt{\pi}$, appears more frequently in statistical calculations. Real math function libraries (as opposed to libm) frequently include a "scaled erfc" function, frequently called ERFCE, that computes $\exp \left(x^{2}\right) \operatorname{erfc}(x)$. Where carefully done, implementations of this function do not experience overflow of intermediate or final results for any positive X , and intermediate or final results underflow only for $x>\operatorname{HUGE}(x) / \sqrt{\pi}$. It is not computed by computing $\operatorname{erfc}(x)$ and multiplying by $\exp \left(x^{2}\right)$, as a naive user might be tempted to do - especially if all we provide is the functionality presently specified in $05-248 \mathrm{r} 3 . \exp \left(x^{2}\right)$ would overflow for $x>\approx 9$ in IEEE single precision, and $\operatorname{erfc}(x)$ would underflow around the same value, so multiplying the results of those functions would produce nonsense for $x>\approx 9$.

1.3 LOG_GAMMA

The LOG_GAMMA subroutine defined in 05-248r3 will be cumbersome to use in nearly all cases, i.e., when one knows $x>0$. It would be better if it were a function that computed $\log (|\Gamma(x)|)$. In the rare case when one cares, one can get the sign of $\Gamma(x)$ as $\operatorname{MERGE}(1,2 * \operatorname{IAND}(\operatorname{INT}(-X), 1)-1, \mathrm{X}>0)$ or \ldots There are two additional alternatives: (1) An additional function that returns a complex result or (2) a COMPLEX optional argument, whose value is required to be a logical initialization expression, that causes LOG_GAMMA to return a complex result if it is present and true. If the result is complex the imaginary part is zero if $\Gamma(x)>0$, or π if $\Gamma(x)<0$ - remember $\log (-|x|)$ is just $\log (|x|)+i \pi$.

2 Syntax

No new syntax and no changes to existing syntax.

3 Edits

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a page and line number or line number range implies all of the indicated text is to be replaced by associated text, while a page and line number followed by $+(-)$ indicates that associated text is to be inserted after (before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.

ERFC (X [, SCALED])
Complementary error function

```
[Insert into list of Mathematical functions in 13.5.2:] 296:33+
    LOG_GAMMA(X [, COMPLEX]) Logarithm of Gamma function
[or (if alternative definition below is selected):]
    LOG_GAMMA (X) Logarithm of Gamma function
[Insert into list of Array reduction functions in 13.5.12:] 299:7+
    NORM2 (X) }\quad\mp@subsup{L}{2}{}\mathrm{ norm of an array
```

[Insert after 13.7.5 EPSILON (X):]
317:17+
13.7.5 $\frac{1}{2}$ ERFC (X [, SCALED])
Description. Complementary error function.
Class. Elemental function.
Arguments.
X shall be of type real.
SCALED (optional) shall be of type logical.
Result Characteristics. Same as X.
Result Value.
Case (i): If SCALED is absent or present with the value false, the value of the result
is a processor-dependent approximation to the complementary error function,
$\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) \mathrm{d} t$.
Case (ii): if SCALED is present with the value true, the value of the result is a processor-
dependent approximation to the exponentially-scaled complementary error func-
tion, $\exp \left(x^{2}\right) \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) \mathrm{d} t$.
Examples.
Case (i): The value of $\operatorname{ERFC}(1.0)$ is 0.1572992070 (approximately).
Case (ii): The value of $\operatorname{ERFC}(20.0)$ is $0.5395865612 \times 10^{-175}$ (approximately).
Case (iii): The value of $\operatorname{ERFC}(20.0, \mathrm{SCALED}=. \mathrm{TRUE}$.) is 0.02817434874 (approximately).

NOTE $13.8 \frac{1}{2}$

The complementary error function is asymptotic to $\exp \left(-x^{2}\right) /(x \sqrt{\pi})$. As such it underflows for $x>\approx 9$ when using single-precision IEEE arithmetic. The exponentially-scaled complementary error function is asymptotic to $1 /(x \sqrt{\pi})$. As such it does not underflow until $x>\operatorname{HUGE}(x) / \sqrt{\pi}$.
[Insert after 13.7.69 LOGICAL (L [, KIND]):]

13.7.69 $\frac{1}{2}$ LOG_GAMMA (X, [COMPLEX])

Description. Principal value of natural logarithm of the Gamma function.
Class. Elemental function.
Arguments.
X shall be of type real. Its value shall not be zero or a negative integer. If COMPLEX is absent or present with the value false, X shall be positive.
COMPLEX (optional) shall be a scalar logical initialization expression.
Result Characteristics.
Case (i): If COMPLEX is absent or present with the value false, the result characteristics are the same as X.
Case (ii): If COMPLEX is present with the value true, the result type is complex with the
same kind type parameter value as X .
Result Value. The result has a value equal to a processor-dependent approximation to $\log _{e} \Gamma(X)$.
Examples.
Case (i): The value of LOG_GAMMA(0.5) is 0.5723649430 (approximately).
Case (ii): The value of LOG_GAMMA(-0.5,.TRUE.) is (1.265512124, 3.141592654) (approximately).

NOTE 13.14 $\frac{1}{2}$

$\Gamma(x)<0$ if $x<0$ and $\lceil x\rceil$ is even. In this case, $\log _{e} \Gamma(x)=\log _{e}|\Gamma(x)|+i \pi$.
[Alternative definition, to insert after 13.7.69 LOGICAL (L [, KIND]):]

13.7.69 $\frac{1}{2}$ LOG_GAMMA (X)

Description. Natural logarithm of the absolute value of the Gamma function.
Class. Elemental function.
Argument. X shall be of type real. Its value shall not be zero or a negative integer.
Result Characteristics. Same as X.
Result Value. The result has a value equal to a processor-dependent approximation to $\log _{e}|\Gamma(X)|$.

Examples.

Case (i): The value of LOG_GAMMA(0.5) is 0.5723649430 (approximately).
Case (ii): The value of LOG_GAMMA(-0.5) is 1.265512124 (approximately).

NOTE $13.14 \frac{1}{2}$

$\Gamma(x)<0$ if $x<0$ and $\lceil x\rceil$ is even. In this case, $\log _{e} \Gamma(x)=\log _{e}|\Gamma(x)|+i \pi$.
[Insert after 13.7.87 NOT (I):]

13.7.87 $\frac{1}{2}$ NORM2 (X)

Description. L_{2} norm of an array.
Class. Transformational function.
Argument. X shall be of type real. It shall not be a scalar.
Result Characteristics. Scalar of the same type and kind type parameter value as X.
Result Value. The result has a value equal to a processor-dependent approximation to the L_{2} norm of X if X is a rank-one array, the Frobenius norm of X if X is a rank-two array, and the generalized L_{2} norm of X for higher-rank arrays. In all cases, this is the square root of the sum of the squares of all elements.
Case (i): $\quad \mathrm{X}$ is a rank-one array.

$$
\operatorname{NORM} 2(X)=\sqrt{\sum_{i=1}^{\operatorname{SIZE}(X)} X(i)^{2}}
$$

Case (ii): $\quad \mathrm{X}$ is a rank-two array.

$$
\operatorname{NORM} 2(X)=\sqrt{\sum_{i=1}^{\operatorname{SIZE}(X, 1)} \sum_{j=1}^{\operatorname{SIZE}(X, 2)} X(i, j)^{2}}
$$

Case (n): $\quad \mathrm{X}$ is a rank- n array.

$$
\operatorname{NORM} 2(X)=\sqrt{\sum_{i_{1}=1}^{\operatorname{SIZE}(X, 1)} \cdots \sum_{i_{n}=1}^{\operatorname{SIZE}(X, n)} X\left(i_{1}, \ldots, i_{n}\right)^{2}}
$$

Examples.

Case (i): The value of NORM2((/ 3.0, $4.0 /$)) is 5.0 (approximately).
Case (ii): The value of NORM2((/ 1.0, 2.0, 2.0 /)) is 3.0 (approximately).
Case (iii): The value of NORM2 ((/ (REAL(I), I = 1, N) /)) is $\operatorname{SQRT}\left(\mathrm{N}^{* *} 3 / 3.0+\mathrm{N}^{* *} 2 / 2.0\right.$ $+\mathrm{N} / 6.0$) (approximately).

NOTE 13.16 $\frac{1}{2}$
It is recommended that the processor compute NORM2 in such a way that intermediate results
do not overflow unless the final result would overflow.

