WORKING DRAFT

J3/06-007r1

25th September 2006 18:59

This is an internal working document of J3.

2006,/09/25 WORKING DRAFT 13/06-007r1

Contents
1 Overview e 1
1.1 Scope . . o o o e 1
1.2 Processor e e e 1
1.3 Inclusions e 1
1.4 Exclusions e e e e e 1
1.5 Conformance 2
1.6 Compatibility 3
1.6.1 New intrinsic procedures L L 3
1.6.2 New intrinsic data type and operator 3
1.6.3 Fortran 2003 compatibility oo 3
1.6.4 Fortran 95 compatibility o 3
1.6.5 Fortran 90 compatibilityo 4
1.6.6 FORTRAN 77 compatibility 4
1.7 Notation used in this part of ISO/IEC 1539 5
1.7.1 Applicability of requirements 5
1.7.2 Informative notes L 5
1.7.3 Syntax rules 5
1.7.4 Constraintso 6
1.7.5 Assumed syntax rules L. L 6
1.7.6 Syntax conventions and characteristics 6
1.7.7 Text conventions e 7
1.8 Deleted and obsolescent features L Lo 7
1.8.1 General 7
1.8.2 Nature of deleted features L 7
1.8.3 Nature of obsolescent features 7
1.9 Normative references e e 7
2 Fortran terms and concepts L L e e 9
2.1 Highlevel syntax e 9
2.2 Program unit concepts Lo 12
2.2.1 Program units and scoping units oo Lo 12
2.2.2 Program e 12
2.2.3 Main programo e e e e 12
2.24 Procedure 12
2.2.5 Module e e 13
2.2.6 Submodule 13
2.3 Execution concepts L e e 14
2.3.1 Statement classification oL oL 14
2.3.2 Program execution Lo e 14
2.3.3 Executable/nonexecutable statements Lo L L 14
2.34 Statement order 14
2.3.5 The END statement 16
2.3.6 Execution sequence L L L 16
2.4 Dataconcepts e e 17
24.1 Type . . . o 17
2.4.2 Data value e e e 17
2.4.3 Dataentity L e 17

J3/06-007r1 WORKING DRAFT 2006/09/25
2.4.4 Scalar e 19

2.4.5 Array . ..o e 19

2.4.6 Co-aITay . . . o v e e e 20

2.4.7 Pointer 20

2.4.8 Storage 20

2.5 Fundamental terms L e 21
2.5.1 Name and designatoro 21

2.5.2 Keyword o e 21

2.5.3 Association 21

254 Declaration 21

2.5.5 Definition e 22

2.5.6 Reference e 22

2.5.7 Intrinsic L e 22

2.5.8 Operator e 22

2.5.9 Sequencel 22

2.5.10 Companion pProCessSOTS v . v v v v i e e e e e 23

3 Lexical tokens, source form, and macro processing L. 25
3.1 Processor character set 25
3.1.1 Letters o . o o e 25

3.1.2 Digits o e 25

3.1.3 Underscore 0 e e e e e e 25

3.1.4 Special characters 26

3.1.5 Other characters 26

3.2 Low-level syntax L 26
3.2.1 Names o e e 26

3.2.2 Constants e e e e 27

3.2.3 Operators e 27

3.2.4 Statement labels L Lo 28

3.2.5 Delimiters oL e 29

3.3 Source form 29
3.3.1 Free source form e 29

3.3.2 Fixed source form 31

3.4 Including source text L L 32
3.5 Macro processing e e 32
3.5.1 Macro definition 32

3.5.2 Macro expansiono e e e e e e e e 35

4 Types . . . e e e 41
4.1 The concept of type e 41
4.1.1 Set of values e e 41

4.1.2 Constants e e e e e 41

4.1.3 Operations 41

4.2 Type parameters e e e e e e 41
4.3 Relationship of types and values to objects L oL, 43
4.3.1 Type specifiers and type compatibility, 43

4.4 Intrinsic types L 45
4.4.1 Classification and specification oL 45

4.4.2 Integer type o e 45

4.4.3 Real type« o o 46

4.4.4 Complex type e 48

4.4.5 Character type o e e 49

4.4.6 Logical type o e 53

4.4.7 Bits type 53

2006,/09/25 WORKING DRAFT 13/06-007r1

4.5 Derived types o e 54
4.5.1 Derived type concepts Lo 54

4.5.2 Derived-type definition oL oo 55

4.5.3 Derived-type parameterso 59

4.5.4 Components 60

4.5.5 Type-bound procedureso 68

4.5.6 Final subroutines 70

4.5.7 Type extension L 72

4.5.8 Derived-type values 74

4.5.9 Derived-type specifier L 74
4.5.10 Construction of derived-type values 75
4.5.11 Derived-type operations and assignment 77

4.6 Enumerations and enumerators e 77
4.7 Construction of array values L L 79
5 Attribute declarations and specifications 83
5.1 General e e e 83
5.2 Type declaration statements Lo 83
5.2.1 Syntaxo e 83

5.2.2 Automatic data objects 84

5.2.3 Initializationo 85

5.2.4 Examples of type declaration statements 85

5.3 Attributes L e 85
5.3.1 Constraints L 85

5.3.2 Accessibility attribute oL 86

5.3.3 ALLOCATABLE attribute 86

5.3.4 ASYNCHRONOUS attribute 86

5.3.5 BIND attribute for data entities, 87

5.3.6 CONTIGUOUS attribute o e 87

5.3.7 DIMENSION attribute 88

5.3.8 EXTERNAL attribute 92

5.3.9 INTENT attribute e 93
5.3.10 INTRINSIC attribute e 95
5.3.11 OPTIONAL attribute 95
5.3.12 PARAMETER attribute 96
5.3.13 POINTER attribute 96

5.3.14 PROTECTED attribute 96
5.3.15 SAVE attribute e 97
5.3.16 TARGET attribute 98
5.3.17 VALUE attribute 98
5.3.18 VOLATILE attribute 98

5.4 Attribute specification statementso L oL 99
5.4.1 Accessibility statement L 99

5.4.2 ALLOCATABLE statement i 100

5.4.3 ASYNCHRONOUS statement 100

5.4.4 BIND statement 100

5.4.5 CONTIGUOQOUS statement i 100

5.4.6 DATA statement 100

5.4.7 DIMENSION statement i 103

5.4.8 INTENT statement i 103

5.4.9 OPTIONAL statement e 103
54.10 PARAMETER statement 104

5.4.11 POINTER statement i 104

5.4.12 PROTECTED statement 104

J3/06-007r1 WORKING DRAFT 2006/09/25

54.13 SAVE statement 104
5.4.14 TARGET statement e 105
5.4.15 VALUE statement e 105
5.4.16 VOLATILE statement i 105
5.5 IMPLICIT statement e 105
5.6 NAMELIST statement e 107
5.7 Storage association of data objects 108
5.7.1 EQUIVALENCE statement 108
5.7.2 COMMON statement e 111
5.7.3 Restrictions on common and equivalenceo 0L 113
Use of data objects L 115
6.1 Scalars 116
6.1.1 Substrings 116
6.1.2 Structure components Lo 117
6.1.3 Complex parts e 119
6.1.4 Type parameter inquiryo Lo 119
6.2 AITAYS 120
6.2.1 Whole arrays e 120
6.2.2 Array elements and array sections oL oL 120
6.2.3 Image selectors 124
6.3 Dynamic association Lo 124
6.3.1 ALLOCATE statement e 124
6.3.2 NULLIFY statement i 129
6.3.3 DEALLOCATE statement 129
Expressions and assignment Lo e 133
7.1 EXPressionso e e e 133
7.1.1 Form of an expression L L 133
7.1.2 Intrinsic operations e 137
7.1.3 Defined operations 138
7.1.4 Type, type parameters, and shape of an expression 139
7.1.5 Conformability rules for elemental operations 141
7.1.6 Specification expressiono 142
7.1.7 Initialization expressiono 143
7.1.8 Evaluation e 145
7.2 Interpretation of operations 150
7.2.1 General oL 150
7.2.2 Numeric intrinsic operations L L L o 151
7.2.3 Character intrinsic operation L oL o 151
7.2.4 Relational intrinsic operations L oL L Lo 152
7.2.5 Logical intrinsic operations 153
7.2.6 Bits intrinsic operations oL oL oL 154
7.3 Precedence of operators Lo 154
7.4 Assignment 156
7.4.1 Assignment statement L 156
7.4.2 Pointer assignment L Lo 162
7.4.3 Masked array assignment - WHERE 0. 166
7.4.4 FORALL 168
Execution control L e e 175
8.1 Executable constructs containing blocks 00000 175
8.1.1 General 175
8.1.2 Rules governing blocks oo 175

2006,/09/25 WORKING DRAFT 13/06-007r1

9

8.1.3 ASSOCIATE construct e 176
8.1.4 BLOCK construct e 177
8.1.5 CASE construct e 178
8.1.6 CRITICAL construct e e e e 180
8.1.7 DO construct 182
8.1.8 IF construct and statement L. 188
8.1.9 SELECT TYPE construct 189
8.1.10 EXIT statement 192
8.2 Branching e 192
8.2.1 GO TO statement 192
8.2.2 Computed GO TO statement 193
8.2.3 Arithmetic IF statement 193
8.3 CONTINUE statement e e e 193
8.4 STOP statement 193
8.5 Image execution control L 195
8.5.1 Image control statements Lo L 195
8.5.2 SYNC ALL statement e 197
8.5.3 SYNC TEAM statement 197
8.5.4 SYNC IMAGES statement 199
8.5.5 NOTIFY and QUERY statements 200
8.5.6 SYNC MEMORY statement 202
8.5.7 STAT= and ERRMSG= specifiers in image execution control statements 203
Input/output statements 205
9.1 Records. e 205
9.1.1 Formatted record e 205
9.1.2 Unformatted recordo 206
9.1.3 Endfile record 206
9.2 External files. 206
9.2.1 File existence 207
9.2.2 File access e 207
9.2.3 File position L 209
9.24 File storage units L L 211
9.3 Imternal files 212
9.4 File connection e 212
9.4.1 Connection modes e e 213
9.4.2 Unit exisStence o v i e e e e e e e e e e e e e e 213
9.4.3 Connection of afiletoaunit 214
9.4.4 Preconnection e e e 215
9.4.5 OPEN statement 215
9.4.6 CLOSE statement e e e 220
9.5 Data transfer statements 221
9.5.1 General 221
9.5.2 Control information list 222
9.5.3 Data transfer input/output list L. 227
9.5.4 Execution of a data transfer input/output statement 229
9.5.5 Termination of data transfer statements 241
9.6 Waiting on pending data transfer L. 241
9.6.1 Wait operationo 241
9.6.2 WAIT statement e 242
9.7 File positioning statements oL oL 243
9.7.1 SYNtax e e e 243
9.7.2 BACKSPACE statement 243
9.7.3 ENDFILE statement e 244

J3/06-007r1 WORKING DRAFT 2006/09/25

10

vi

9.74 REWIND statement 244
9.8 FLUSH statement e 244
9.9 File inquiry statement L L 245
9.9.1 Forms of the INQUIRE statement 245
9.9.2 Inquiry specifiers 246
9.9.3 Inquire by output list 252
9.10 Error, end-of-record, and end-of-file conditions 252
9.10.1 Error conditions and the ERR= specifier 253
9.10.2 End-of-file condition and the END= specifier. 253
9.10.3 End-of-record condition and the EOR= specifier 254
9.10.4 IOSTAT= specifier 254
9.10.5 IOMSG=specifier 255
9.11 Restrictions on input/output statements Lo L. 255
Input/output editing e 257
10.1 Format specifications L 257
10.2 Explicit format specification methods L. 257
10.2.1 FORMAT statement i 257
10.2.2 Character format specificationo 0oL 257
10.3 Form of a format item list 258
10.3.1 Syntax e 258
10.3.2 Edit descriptors 258
10.3.3 Fields o e 260
10.4 Interaction between input/output list and format 260
10.5 Positioning by format controlo L 262
10.6 Decimal symbol 262
10.7 Data edit descriptors e 262
10.7.1 General oL 262
10.7.2 Numeric and bits editing L o 263
10.7.3 Logical editing L 269
10.7.4 Character editing L 270
10.7.5 Generalized editing oL 270
10.7.6 User-defined derived-type editing L. 272
10.8 Control edit descriptors L 272
10.8.1 Position editing L 273
10.8.2 Slash editing L 274
10.8.3 Colon editing L 274
10.8.4 SS,SP,and Sediting 274
10.8.5 Peediting L 274
10.8.6 BN and BZ editing 275
10.8.7 RU, RD, RZ, RN, RC, and RP editing 275
10.8.8° DCand DP editing 275
10.9 Character string edit descriptors 276
10.10 List-directed formatting L 276
10.10.1 General Lo 276
10.10.2 Values and value separators o 276
10.10.3 List-directed input Lo 277
10.10.4 List-directed outputo 279
10.11 Namelist formatting L e 280
10.11.1 General Lo 280
10.11.2 Name-value subsequences L o 280
10.11.3 Namelist input oL oL 280
10.11.4 Namelist output e 284

2006,/09/25 WORKING DRAFT 13/06-007r1

11 Program units e e e e 287
11.1 Main programt ot e e e e 287
11.2 Modules o 288

11.2.1 General oL L 288
11.2.2 The USE statement and use association 289
11.2.3 Submodules 291
11.3 Block data program units. oL 292

12 Procedures e 295
12.1 Concepts o o o e e 295
12.2 Procedure classifications 295

12.2.1 Procedure classification by reference o o000 295
12.2.2 Procedure classification by means of definition 295
12.3 CharacteriStics o 296
12.3.1 Characteristics of procedures Lo 296
12.3.2 Characteristics of dummy arguments L. 296
12.3.3 Characteristics of function results L. 297
12.4 Procedure interface L 297
12.4.1 General oL 297
12.4.2 Implicit and explicit interfaces L oo 297
12.4.3 Specification of the procedure interface, ... 298
12.5 Procedure reference L 308
12.5.1 Syntax e e 308
12.5.2 Actual arguments, dummy arguments, and argument association 310
12.5.3 Function referenceo 322
12.5.4 Subroutine referenceo 322
12.5.5 Resolving named procedure references. oo 323
12.5.6 Resolving type-bound procedure references 325
12.6 Procedure definitiono 325
12.6.1 Intrinsic procedure definition Lo 325
12.6.2 Procedures defined by subprograms oL 326
12.6.3 Definition and invocation of procedures by means other than Fortran 333
12.6.4 Statement function 333
12.7 Pure procedureso e 334
12.8 Elemental procedureso e 336
12.8.1 Elemental procedure declaration and interface 336
12.8.2 Elemental function actual arguments and results 336
12.8.3 Elemental subroutine actual arguments Lo 337

13 Intrinsic procedures and modules 339
13.1 Classes of intrinsic procedures Lo 339
13.2 Arguments to intrinsic procedures Lo oL oL 339

13.2.1 Generalrules. L 339
13.2.2 The shape of array arguments L 0oL 340
13.2.3 Mask argumentso Lo 340
13.2.4 Arguments to collective subroutines L. 340
13.3 Bit model L e 340
13.4 Numeric models L 341
13.5 Standard generic intrinsic procedures Lo oL 342
13.5.1 Numeric functions 342
13.5.2 Mathematical functions oL Lo 343
13.5.3 Character functions 343
13.5.4 Kind functions L 344
13.5.5 Miscellaneous type conversion functions00 344

vii

J3/06-007r1 WORKING DRAFT 2006/09/25

13.5.6 Numeric inquiry functions 344
13.5.7 Array inquiry functionso L 344
13.5.8 Other inquiry functions L Lo 345
13.5.9 Bit manipulation procedureso L L 345
13.5.10 Floating-point manipulation functions. oo 345
13.5.11 Vector and matrix multiply functions oL 346
13.5.12 Array reduction functions L 346
13.5.13 Array construction functions Lo 346
13.5.14 Array location functions L 346
13.5.15 Collective subroutines L Lo 347
13.5.16 Null function 347
13.5.17 Allocation transfer procedure L L oo 347
13.5.18 Random number subroutines 347
13.5.19 System environment procedures 347

13.6 Specific names for standard intrinsic functionso oo 348
13.7 Specifications of the standard intrinsic procedures 349
13.8 Standard intrinsic modules L 434
13.8.1 General e e e e 434

13.8.2 The IEEE intrinsic modules oL 435
13.8.3 The ISO_FORTRAN_ENV intrinsic module 435
13.8.4 The ISO_C_BINDING intrinsic module 438

14 Exceptions and IEEE arithmetic 439
14.1 Derived types and constants defined in the modules 440
14.2 The exceptions o i e e e e e e 441
14.3 The rounding modes L e e 442
14.4 Underflow mode 443
14.5 Halting L 443
14.6 The floating point status oL L 444
14.7 Exceptional values. oL L 444
14.8 IEEE arithmetic 0 444
14.9 Tables of the procedures L 445
14.9.1 Inquiry functions 445
14.9.2 Elemental functionso 446
14.9.3 Kind functiono 446
14.9.4 Elemental subroutines L L Lo 446
14.9.5 Nonelemental subroutines oo 446

14.10 Specifications of the procedures 447
14.11 Examples oL e 462
15 Interoperability with C. 0 o e 467
15.1 General e e 467
15.2 The ISO_C_BINDING intrinsic module 467
15.2.1 Summary of contentso L 467
15.2.2 Named constants and derived types in the module 467
15.2.3 Procedures in the moduleo oo 468

15.3 Interoperability between Fortran and C entities 472
15.3.1 General oL 472
15.3.2 Interoperability of intrinsic types oL 472
15.3.3 Interoperability with C pointer types 474
15.3.4 Interoperability of derived types and C struct types 475
15.3.5 Interoperability of scalar variables 476
15.3.6 Interoperability of array variables 00 476
15.3.7 Interoperability of procedures and procedure interfaces 477

viii

2006,/09/25 WORKING DRAFT 13/06-007r1

15.4 Interoperation with C global variables. 479
15.4.1 General e e e e 479

15.4.2 Binding labels for common blocks and variables 480

15.5 Interoperation with C functions oo 480
15.5.1 Definition and reference of interoperable procedures 480

15.5.2 Binding labels for procedures oo 481

15.5.3 Exceptions and IEEE arithmetic procedures 481

16 Scope, association, and definition 483
16.1 Identifiers and entities L 483
16.2 Scope of global identifiers 483
16.3 Scope of local identifiers 484
16.3.1 Classes of local identifiers 0oL 484

16.3.2 Local identifiers that are the same as common block names 485

16.3.3 Functionresults L 485

16.3.4 Components, type parameters, and bindings 485
16.3.5 Argument keywords 486

16.4 Statement and construct entitieso L 486
16.5 Associationo 487
16.5.1 Name association L L L 487

16.5.2 Pointer association e 491
16.5.3 Storage association 494
16.5.4 Inheritance association Lo 498

16.5.5 Establishing associations L o oL 498

16.6 Definition and undefinition of variables oL 0oL 498
16.6.1 Definition of objects and subobjects 498

16.6.2 Variables that are always defined L. 499
16.6.3 Variables that are initially defined L o000 499
16.6.4 Variables that are initially undefined 499

16.6.5 Events that cause variables to become defined 499

16.6.6 Events that cause variables to become undefined 501
16.6.7 Variable definition context 503

16.6.8 Pointer association context oL Lo 504
Annex A (informative)Glossary of technical terms Lo Lo 505
Annex B (informative)Decremental features Lo Lo Lo 519
B.1 Deleted features e 519
B.2 Obsolescent features 520
B.2.1 Alternatereturn e 520

B.2.2 Computed GO TO statement 520

B.2.3 Statement functions Lo 520

B.2.4 DATA statements among executables 521

B.2.5 Assumed character length functions o 0oL 521

B.2.6 Fixed form source e 521

B.2.7 CHARACTER* form of CHARACTER declaration 521
Annex C (informative)Extended notes o 523
C.l Clause 4 notes v o v i e e e e e 523
C.1.1 Selection of the approximation methods (4.4.3) 523

C.1.2 Type extension and component accessibility (4.5.2.2, 4.5.4) 523

C.1.3 Abstract types 524

C.1.4 Pointers (4.5.2) 525

C.1.5 Structure constructors and generic names 526

C.1.6 Generic type-bound procedures 528

J3/06-007r1 WORKING DRAFT 2006/09/25

C.2

C.3

C4

C.5

C.6

C.7

C.8

C.9

C.10

C.11

C.12

C.13

C.1.7 Final subroutines (4.5.6, 4.5.6.2, 4.5.6.3,4.5.6.4) 529
Clause b nOteS e 531
C.2.1 The POINTER attribute (5.3.13) 531
C.2.2 The TARGET attribute (5.3.16) 532
C.2.3 The VOLATILE attribute (5.3.18) 532
Clause 6 NOteS o o v i e 533
C.3.1 Structure components (6.1.2) 533
C.3.2 Allocation with dynamic type (6.3.1) 535
C.3.3 Pointer allocation and association 535
Clause 7n0tes o e 536
C.4.1 Character assignment L 536
C.4.2 Evaluation of function references 536
C.4.3 Pointers in exXpressions v v v it e e e e 536
C.4.4 Pointers on the left side of an assignment 0. 537
C.4.5 An example of a FORALL construct containing a WHERE construct 537
C.4.6 Examples of FORALL statements 538
Clause 8 NOtes o o e 539
C.5.1 Loopcontrol 539
C.5.2 The CASE construct e 539
C.5.3 Examples of DO constructs. o 539
C.5.4 Examples of invalid DO constructs 542
Clause 9 notes o o e 543
C.6.1 External files (9.2) L 543
C.6.2 Nonadvancing input/output (9.2.3.1) 544
C.6.3 Asynchronous input/output 545
C.6.4 OPEN statement (9.4.5) 546
C.6.5 Connection properties (9.4.3) o 548
C.6.6 CLOSE statement (9.4.6) i 548
Clause 10 notes e e 548
C.7.1 Number of records (10.4, 10.5, 10.8.2) 548
C.7.2 List-directed input (10.10.3) 549
Clause 11 notes« . o it e e 550
C.8.1 Main program and block data program unit (11.1, 11.3) 550
C.8.2 Dependent compilation (11.2) L 550
C.8.3 Examples of the use of modules 552
C.8.4 Modules with submodules o 558
Clause 12 notes o i e e 563
C.9.1 Portability problems with external procedures (12.4.3.4) 563
C.9.2 Procedures defined by means other than Fortran (12.6.3) 563
C.9.3 Procedure interfaces (12.4) 564
C.9.4 Abstract interfaces (12.4) and procedure pointer components (4.5) 564
C.9.5 Argument association and evaluation (12.5.2) 566
C.9.6 Pointers and targets as arguments (12.5.2.5, 12.5.2.7, 12.528) 567
C.9.7 Polymorphic Argument Association (12.5.2.10) 568
Clause 13 notes e 570
C.10.1 Module for THIS.IMAGE and IMAGE_INDEX 570
C.10.2 Collective co-array subroutine variations 570
Clause 15 notes o o o i e e 571
C.11.1 Runtime environments oL o o971
C.11.2 Examples of Interoperation between Fortran and C Functions 571
Clause 16 notes o e e 577
C.12.1 Examples of host association (16.5.1.4) 577
C.12.2 Rules ensuring unambiguous generics (12.4.3.3.4) 578
Array feature notes oL 582

2006,/09/25 WORKING DRAFT 13/06-007r1
C.13.1 Summary of features 582

C.13.2 Examples. o e 583

C.13.3 FORmula TRANslation and array processing 588

C.13.4 Sum of squared residualso 589

C.13.5 Vector norms: infinity-norm and one-norm 589

C.13.6 Matrix norms: infinity-norm and one-normo 589

C.13.7 Logical queries L 589

C.13.8 Parallel computations 590

C.13.9 Example of element-by-element computation 590

C.13.10 Bit manipulation and inquiry procedures 591

Annex D (informative)Syntax rules 593
D.1 Extract of all syntax rules Lo 593
D.2 Syntax rule cross-reference L 638
Annex E (informative)Index 651

Xi

J3/06-007r1 WORKING DRAFT 2006/09/25

xii

2006,/09/25 WORKING DRAFT 13/06-007r1

List of Tables

2.1

2.2

3.1

6.1

7.1
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13

10.1
10.2

10.3

13.1

15.1

15.2

Requirements on statement orderingo 15
Statements allowed in scoping units oL oL 15
Special characters 26
Subscript order value 121
Type of operands and results for intrinsic operators 137
Interpretation of the numeric intrinsic operators 151
Interpretation of the character intrinsic operator // 151
Interpretation of the relational intrinsic operators 152
Interpretation of the logical intrinsic operators 153
The values of operations involving logical intrinsic operators. 153
Interpretation of the bits intrinsic operators 154
The values of bits intrinsic operations other than // 154
Categories of operations and relative precedence 154
Type conformance for the intrinsic assignment statement 157
Numeric conversion and the assignment statement 160
Bits conversion and the assignment statemento 160
E and D exponent formso 266
EN exponent forms 267
ES exponent formso 268
Characteristics of the result of NULL () 410
Names of C characters with special semantics 468
Interoperability between Fortran and C types 472

xiii

J3/06-007r1 WORKING DRAFT 2006/09/25

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechni-
cal Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international organi-
zations, governmental and nongovernmental, in liaison with ISO and IEC, also take part in the work. In
the field of information technology, ISO and IEC have established a joint technical committee, ISO/TEC
JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of the joint technical committee is to prepare International Standards. Draft Interna-
tional Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting
a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 1539-1 was prepared by Joint Technical Committee ISO/IEC/JTC1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

This fifth edition cancels and replaces the fourth edition (ISO/IEC 1539-1:2004), which has been tech-
nically revised. It also incorporates the Technical Corrigenda ISO/IEC 1539-1:2004/Cor. 1:2005 and
ISO/IEC 15391:2004/Cor. 2:2006.

ISO/IEC 1539 consists of the following parts, under the general title Information technology — Pro-
gramming languages — Fortran:

— Part 1: Base language
— Part 2: Varying length character strings

— Part 3: Conditional Compilation

xiv

2006,/09/25 WORKING DRAFT 13/06-007r1

Introduction

International Standard programming language Fortran

This part of the International Standard comprises the specification of the base Fortran language, infor-
mally known as Fortran 2008. With the limitations noted in 1.6.3, the syntax and semantics of Fortran
2003 are contained entirely within Fortran 2008. Therefore, any standard-conforming Fortran 2003 pro-
gram not affected by such limitations is a standard-conforming Fortran 2008 program. New features
of Fortran 2008 can be compatibly incorporated into such Fortran 2003 programs, with any exceptions
indicated in the text of this part of the standard.

Fortran 2008 contains several extensions to Fortran 2003; some of these are listed below.

(1) The maximum rank of an array has been increased from seven to fifteen.

(2) Performance enhancements: The DO CONCURRENT construct, which allows loop itera-
tions to be executed in any order or potentially concurrently.

(3) Pointers can be initialized to point to a target.

(4) Performance enhancements: CONTIGUOUS attribute.

(5) The ATAN intrinsic is extended so that ATAN (Y, X) is ATAN2 (Y,X).
(6) Allocatable components of recursive type.

(7) The MOLD= specifier has been added to the ALLOCATE statement.
(8)

OPEN statement enhancements that allow the processor to select a unit number when
opening an external unit. Such a unit number is guaranteed not to interfere with any
program-managed unit numbers.

(9) The BLOCK construct (allows declarations within executable statements).

(10) A disassociated or deallocated actual argument can correspond to an optional nonpointer
nonallocatable dummy argument.

(11) The concept of variable now includes references to pointer functions which return associated
pointers.

(12) The COMPILER_VERSION and COMPILER_OPTIONS functions provide information
about the translation phase of the execution of a program.

(13) The real and imaginary parts of a COMPLEX variable can be selected using a component-
like syntax.

(14) Scoped macros which can generate whole Fortran statements and subprograms.

(15) A FINDLOC intrinsic was added and a BACK= argument was also added to MAXLOC
and MINLOC.

(16) Parallel programming support: SPMD parallel programming, co-arrays for data exchange
between images, image control statements, and collective procedures.

(17) A BITS data type for non-numeric programming and enhanced handling of BOZ constants.
(18) The GO edit descriptor.
(19) Additional mathematical intrinsic functions for computing Bessel functions, the error func-
tion, the Gamma function, and generalized L, norms.
J3 internal note
Unresolved Technical Issue 080

The laundry list needs to be redone at a later time. RAH suggests going down the list of things
in spread sheet and having a big feature and a little feature list.

XV

J3/06-007r1 WORKING DRAFT 2006/09/25

Organization of this part of ISO/IEC 1539

This part of ISO/IEC 1539 is organized in 16 clauses, dealing with 8 conceptual areas. These 8 areas,
and the clauses in which they are treated, are:

High/low level concepts Clauses 1, 2, 3
Data concepts Clauses 4, 5, 6
Computations Clauses 7, 13, 14
Execution control Clause 8
Input/output Clauses 9, 10
Program units Clauses 11, 12
Interoperability with C Clause 15

Scoping and association rules Clause 16

It also contains the following nonnormative material:

Glossary
Decremental features
Extended notes
Syntax rules

Index

HoQw»

xvi

17

18
19

20

21

22
23
24
25

26

27

28

29
30

31

2006,/09/25 WORKING DRAFT 13/06-007r1

Information technology — Programming languages —
Fortran —

Part 1:

Base Language

1 Overview

1.1 Scope

ISO/IEC 1539 is a multipart International Standard; the parts are published separately. This publi-
cation, ISO/IEC 1539-1, which is the first part, specifies the form and establishes the interpretation
of programs expressed in the base Fortran language. The purpose of this part of ISO/IEC 1539 is to
promote portability, reliability, maintainability, and efficient execution of Fortran programs for use on
a variety of computing systems. The second part, ISO/TEC 1539-2, defines additional facilities for the
manipulation of character strings of variable length; this has been largely subsumed by allocatable char-
acters with deferred length parameters. The third part, ISO/TEC 1539-3, defines a standard conditional
compilation facility for Fortran. A processor conforming to part 1 need not conform to ISO/IEC 1539-2
or ISO/IEC 1539-3; however, conformance to either assumes conformance to this part. Throughout this
publication, the term “this standard” refers to ISO/TEC 1539-1.

1.2 Processor

The combination of a computing system and the mechanism by which programs are transformed for use
on that computing system is called a processor in this part of ISO/TEC 1539.

1.3 Inclusions

This part of ISO/IEC 1539 specifies

(1) the forms that a program written in the Fortran language may take,
(2) the rules for interpreting the meaning of a program and its data,

(3) the form of the input data to be processed by such a program, and
(4) the form of the output data resulting from the use of such a program.

1.4 Exclusions

This part of ISO/IEC 1539 does not specify

(1) the mechanism by which programs are transformed for use on computing systems,
(2) the operations required for setup and control of the use of programs on computing systems,

(3) the method of transcription of programs or their input or output data to or from a storage
medium,

© 0 N o b~ W N

10

11
12
13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

35
36

37
38
39
40
41
42

43

44
45
46

J3/06-007r1 WORKING DRAFT 2006/09/25

(4) the program and processor behavior when this part of ISO/TEC 1539 fails to establish an
interpretation except for the processor detection and reporting requirements in items (2) to
(8) of 1.5,

(5) the size or complexity of a program and its data that will exceed the capacity of any
particular computing system or the capability of a particular processor,

(6) the physical properties of the representation of quantities and the method of rounding,
approximating, or computing numeric values on a particular processor,

(7) the physical properties of input/output records, files, and units, or

(8) the physical properties and implementation of storage.

1.5 Conformance

A program (2.2.2) is a standard-conforming program if it uses only those forms and relationships
described herein and if the program has an interpretation according to this part of ISO/IEC 1539. A
program unit (2.2.1) conforms to this part of ISO/IEC 1539 if it can be included in a program in a
manner that allows the program to be standard conforming.

A processor conforms to this part of ISO/IEC 1539 if:

(1) it executes any standard-conforming program in a manner that fulfills the interpretations
herein, subject to any limits that the processor may impose on the size and complexity of
the program;

(2) it contains the capability to detect and report the use within a submitted program unit of
a form designated herein as obsolescent, insofar as such use can be detected by reference to
the numbered syntax rules and constraints;

(3) it contains the capability to detect and report the use within a submitted program unit of
an additional form or relationship that is not permitted by the numbered syntax rules or
constraints, including the deleted features described in Annex B;

(4) it contains the capability to detect and report the use within a submitted program unit of
an intrinsic type with a kind type parameter value not supported by the processor (4.4);

(5) it contains the capability to detect and report the use within a submitted program unit of
source form or characters not permitted by Clause 3;

(6) it contains the capability to detect and report the use within a submitted program of name
usage not consistent with the scope rules for names, labels, operators, and assignment
symbols in Clause 16;

(7) it contains the capability to detect and report the use within a submitted program unit of
intrinsic procedures whose names are not defined in Clause 13; and

(8) it contains the capability to detect and report the reason for rejecting a submitted program.

However, in a format specification that is not part of a FORMAT statement (10.2.1), a processor need not
detect or report the use of deleted or obsolescent features, or the use of additional forms or relationships.

A standard-conforming processor may allow additional forms and relationships provided that such ad-
ditions do not conflict with the standard forms and relationships. However, a standard-conforming
processor may allow additional intrinsic procedures even though this could cause a conflict with the
name of a procedure in a standard-conforming program. If such a conflict occurs and involves the name
of an external procedure, the processor is permitted to use the intrinsic procedure unless the name is
given the EXTERNAL attribute (5.3.8) in the scoping unit (2.2.1). A standard-conforming program
shall not use nonstandard intrinsic procedures or modules that have been added by the processor.

Because a standard-conforming program may place demands on a processor that are not within the
scope of this part of ISO/IEC 1539 or may include standard items that are not portable, such as
external procedures defined by means other than Fortran, conformance to this part of ISO/IEC 1539

12

13
14

15
16

17

18

19
20
21

22

23

24
25
26
27

28
29

30
31

32

2006,/09/25 WORKING DRAFT 13/06-007r1

does not ensure that a program will execute consistently on all or any standard-conforming processors.

In some cases, this part of ISO/TEC 1539 allows the provision of facilities that are not completely specified
in the standard. These facilities are identified as processor dependent. They shall be provided, with
methods or semantics determined by the processor.

NOTE 1.1

The processor should be accompanied by documentation that specifies the limits it imposes on the
size and complexity of a program and the means of reporting when these limits are exceeded, that
defines the additional forms and relationships it allows, and that defines the means of reporting
the use of additional forms and relationships and the use of deleted or obsolescent forms. In this
context, the use of a deleted form is the use of an additional form.

The processor should be accompanied by documentation that specifies the methods or semantics
of processor-dependent facilities.

1.6 Compatibility

1.6.1 New intrinsic procedures

Each Fortran International Standard since ISO 1539:1980 (informally referred to as FORTRAN 77), defines
more intrinsic procedures than the previous one. Therefore, a Fortran program conforming to an older
standard may have a different interpretation under a newer standard if it invokes an external procedure
having the same name as one of the new standard intrinsic procedures, unless that procedure is specified
to have the EXTERNAL attribute.

1.6.2 New intrinsic data type and operator

This part of ISO/IEC 1539 specifies a new intrinsic type, BITS, which will conflict with a derived type
of the same name.

This part of ISO/IEC 1539 specifies a new intrinsic operator, .XOR., which might conflict with a user-
defined operator of the same name, has a different precedence from that of a user-defined operator, and
a different syntax from that of a user-defined unary operator.

1.6.3 Fortran 2003 compatibility

Except as identified in this subclause, this part of ISO/IEC 1539 is an upward compatible extension
to the preceding Fortran International Standard, ISO/IEC 1539-1:2004 (Fortran 2003). Any standard-
conforming Fortran 2003 program that does not use a derived type called BITS, and does not use a
user-defined operator called .XOR., remains standard-conforming under this part of ISO/TEC 1539.

1.6.4 Fortran 95 compatibility

Except as identified in this subclause, this part of ISO/TEC 1539 is an upward compatible extension to
ISO/IEC 1539-1:1997 (Fortran 95). Any standard-conforming Fortran 95 program that does not use a
derived type called BITS or a user-defined operator called .XOR. remains standard-conforming under
this part of ISO/IEC 1539. The following Fortran 95 features may have different interpretations in this
part of ISO/IEC 1539.

(1) Earlier Fortran standards had the concept of printing, meaning that column one of formatted
output had special meaning for a processor-dependent (possibly empty) set of external
files. This could be neither detected nor specified by a standard-specified means. The
interpretation of the first column is not specified by this part of ISO/IEC 1539.

S O~ W N

10
11
12

13
14
15

16
17

18

19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47

J3/06-007r1 WORKING DRAFT 2006/09/25

(2) This part of ISO/TEC 1539 specifies a different output format for real zero values in list-
directed and namelist output.

(3) If the processor can distinguish between positive and negative real zero, this part of ISO/TEC
1539 requires different returned values for ATAN2(Y,X) when X < 0 and Y is negative real
zero and for LOG(X) and SQRT(X) when X is complex with REAL(X) < 0 and negative
zero imaginary part.

1.6.5 Fortran 90 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part
of ISO/IEC 1539 is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-
conforming Fortran 90 program that does not use a derived type called BITS, a user-defined operator
called .XOR., or one of the deleted features remains standard-conforming under this part of ISO/IEC
1539.

The PAD= specifier in the INQUIRE statement in this part of ISO/IEC 1539 returns the value UNDE-
FINED if there is no connection or the connection is for unformatted input/output. Fortran 90 specified
YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor
dependent. this part of ISO/IEC 1539 specifies that the second argument shall not be zero.

1.6.6 FORTRAN 77 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part
of ISO/IEC 1539 is an upward compatible extension to ISO 1539:1980 (FORTRAN 77). Any standard-
conforming FORTRAN 77 program that does not use one of the deleted features noted in Annex B.1 and
that does not depend on the differences specified here remains standard-conforming under this part of
ISO/IEC 1539. This part of ISO/IEC 1539 restricts the behavior for some features that were processor
dependent in FORTRAN 77. Therefore, a standard-conforming FORTRAN 77 program that uses one of
these processor-dependent features may have a different interpretation under this part of ISO/IEC 1539,
yet remain a standard-conforming program. The following FORTRAN 77 features may have different
interpretations in this part of ISO/IEC 1539.

(1) FORTRAN 77 permitted a processor to supply more precision derived from a real constant
than can be represented in a real datum when the constant is used to initialize a data object
of type double precision real in a DATA statement. This part of ISO/TEC 1539 does not
permit a processor this option.

(2) If anamed variable that was not in a common block was initialized in a DATA statement and
did not have the SAVE attribute specified, FORTRAN 77 left its SAVE attribute processor
dependent. This part of ISO/TEC 1539 specifies (5.4.6) that this named variable has the
SAVE attribute.

(3) FORTRAN 77 specified that the number of characters required by the input list was to be
less than or equal to the number of characters in the record during formatted input. This
part of ISO/IEC 1539 specifies (9.5.4.4.2) that the input record is logically padded with
blanks if there are not enough characters in the record, unless the PAD= specifier with the
value 'NO’ is specified in an appropriate OPEN or READ statement.

(4) A value of 0 for a list item in a formatted output statement will be formatted in a different
form for some G edit descriptors. In addition, this part of ISO/TEC 1539 specifies how
rounding of values will affect the output field form, but FORTRAN 77 did not address this
issue. Therefore, some FORTRAN 77 processors may produce an output form different from
the output form produced by Fortran 2003 processors for certain combinations of values and
G edit descriptors.

(5) If the processor can distinguish between positive and negative real zero, the behavior of the

10
11

12

13
14

15
16
17
18
19

20

21

22
23
24
25
26
27
28
29

2006,/09/25 WORKING DRAFT 13/06-007r1

SIGN intrinsic function when the second argument is negative real zero is changed by this
part of ISO/IEC 1539.

1.7 Notation used in this part of ISO/IEC 1539

1.7.1 Applicability of requirements

In this part of ISO/IEC 1539, “shall” is to be interpreted as a requirement; conversely, “shall not” is
to be interpreted as a prohibition. Except where stated otherwise, such requirements and prohibitions
apply to programs rather than processors.

1.7.2 Informative notes

Informative notes of explanation, rationale, examples, and other material are interspersed with the
normative body of this part of ISO/IEC 1539. The informative material is nonnormative; it is identified
by being in shaded, framed boxes that have numbered headings beginning with “NOTE.”

1.7.3 Syntax rules

Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These
syntax rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.

(1) Characters from the Fortran character set (3.1) are interpreted literally as shown, except
where otherwise noted.

(2) Lower-case italicized letters and words (often hyphenated and abbreviated) represent gen-
eral syntactic classes for which particular syntactic entities shall be substituted in actual
statements.

Common abbreviations used in syntactic terms are:

arg for argument attr for attribute
decl for declaration def for definition
desc for descriptor exrpr for expression
mnt for integer op for operator
spec for specifier stmt for statement

(3) The syntactic metasymbols used are:

is introduces a syntactic class definition

or introduces a syntactic class alternative

[] encloses an optional item

[]... encloses an optionally repeated item
that may occur zero or more times

| continues a syntax rule

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s is a
one- or two-digit clause number and nn is a two-digit sequence number within that clause.
The syntax rules are distributed as appropriate throughout the text, and are referenced by
number as needed. Some rules in Clauses 2 and 3 are more fully described in later clauses; in
such cases, the clause number s is the number of the later clause where the rule is repeated.

(5) The syntax rules are not a complete and accurate syntax description of Fortran, and cannot
be used to generate a Fortran parser automatically; where a syntax rule is incomplete, it is
restricted by corresponding constraints and text.

N o o0~ W

©

10
11
12

13

14

15
16

17
18

19

20

21
22

23
24
25
26

J3/06-007r1 WORKING DRAFT 2006/09/25

NOTE 1.2

An example of the use of the syntax rules is:

digit-string is digit | digit | ...

The following are examples of forms for a digit string allowed by the above rule:

digit

digit digit

digit digit digit digit

digit digit digit digit digit digit digit digit

If particular entities are substituted for digit, actual digit strings might be:

4

67

1999
10243852

1.7.4 Constraints

Each constraint is given a unique identifying number of the form Csn, where s is a one or two digit clause
number and nn is a two or three digit sequence number within that clause.

Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is
annotated with the syntax rule number in parentheses. A constraint that is associated with a syntax
rule constitutes part of the definition of the syntax term defined by the rule. It thus applies in all places
where the syntax term appears.

Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar
to that of a restriction stated in the text, except that a processor is required to have the capability to
detect and report violations of constraints (1.5). In some cases, a broad requirement is stated in text
and a subset of the same requirement is also stated as a constraint. This indicates that a standard-
conforming program is required to adhere to the broad requirement, but that a standard-conforming
processor is required only to have the capability of diagnosing violations of the constraint.

1.7.5 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint informa-
tion, the following rules are assumed.

R101 ayz-list is ayz [, zyz]| ..
R102 zyz-name is name
R103 scalar-zyz is xyz

C101 (R103) scalar-zyz shall be scalar.

The letters “xyz” stand for any syntactic class phrase. An explicit syntax rule for a term overrides an
assumed rule.

1.7.6 Syntax conventions and characteristics
(1) Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall
be delimited by end-of-line or semicolon, and may be labeled unless it forms part of another
statement (such as an IF or WHERE statement). Conversely, everything considered to be
a source form statement is given a “-stmt” ending in the syntax rules.

© 00 N o o A W N =

—
o

11

12
13
14

15

16

17

18
19
20
21
22

23

24

25
26

27

28
29

30
31

32
33

34

35
36

2006,/09/25 WORKING DRAFT 13/06-007r1

(2) The rules on statement ordering are described rigorously in the definition of program-unit
(R202). Expression hierarchy is described rigorously in the definition of expr (R722).

(3) The suffix “-spec” is used consistently for specifiers, such as input/output statement speci-
fiers. Tt also is used for type declaration attribute specifications (for example, “array-spec”
in R510), and in a few other cases.

(4) Where reference is made to a type parameter, including the surrounding parentheses, the

suffix “-selector” is used. See, for example, “kind-selector” (R405) and “length-selector”
(R421).

(5) The term “subscript” (for example, R619, R620, and R621) is used consistently in array
definitions.

1.7.7 Text conventions

In the descriptive text, an equivalent English word is frequently used in place of a syntactic term.
Particular statements and attributes are identified in the text by an upper-case keyword, e.g., “END
statement”. Boldface words are used in the text where they are first defined with a specialized meaning.
The descriptions of obsolescent features appear in a smaller type size.

NOTE 1.3

’ This sentence is an example of the type size used for obsolescent features.

1.8 Deleted and obsolescent features

1.8.1 General

This part of ISO/IEC 1539 protects the users’ investment in existing software by including all but five
of the language elements of Fortran 90 that are not processor dependent. This part of ISO/IEC 1539
identifies two categories of outmoded features. There are five in the first category, deleted features,
which consists of features considered to have been redundant in FORTRAN 77 and largely unused in
Fortran 90. Those in the second category, obsolescent features, are considered to have been redundant
in Fortran 90 and Fortran 95, but are still frequently used.

1.8.2 Nature of deleted features

Better methods existed in FORTRAN 77 for each deleted feature. These features were not included in
Fortran 95 or Fortran 2003, and are not included in this revision of Fortran.

1.8.3 Nature of obsolescent features

Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended
that programmers use these better methods in new programs and convert existing code to these methods.

The obsolescent features are identified in the text of this part of ISO/IEC 1539 by a distinguishing type
font (1.7.7).

A future revision of this part of ISO/IEC 1539 might delete an obscolescent feature if its use has become
insignificant.

1.9 Normative references

The following referenced standards are indispensable for the application of this part of ISO/IEC 1539.
For dated references, only the edition cited applies. For undated references, the latest edition of the

10

11

12
13

J3/06-007r1 WORKING DRAFT 2006/09/25

referenced standard (including any amendments) applies.
ISO/IEC 646:1991, Information technology—ISO 7-bit coded character set for information interchange.

ISO 8601:1988, Data elements and interchange formats—Information interchange—
Representation of dates and times.

ISO/IEC 9899:1999, Information technology—Programming languages—C.

ISO/IEC 10646-1:2000, Information technology— Universal multiple-octet coded character set (UCS)—
Part 1: Architecture and basic multilingual plane.

IEC 60559 (1989-01), Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 646:1991 (International Reference Version) is the international equivalent of ANSI X3.4-1986,
commonly known as ASCII.

This part of ISO/IEC 1539 refers to ISO/IEC 9899:1999 as the C International Standard.

Because TEC 60559 (1989-01) was originally IEEE 754-1985, Standard for binary floating-point arith-
metic, and is widely known by this name, this standard refers to it as the IEEE International Standard.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

2006,/09/25 WORKING DRAFT 13/06-007r1

2 Fortran terms and concepts

2.1 High level syntax

This clause introduces the terms associated with program units and other Fortran concepts above the
construct, statement, and expression levels and illustrates their relationships. The notation used in this
part of ISO/IEC 1539is described in 1.7.

NOTE 2.1

Constraints and other information related to the rules that do not begin with R2 appear in the
appropriate clause.

R201 program is program-unit
[program-unit | ...

A program shall contain exactly one main-program program-unit or a main program defined by means
other than Fortran, but not both.

R202 program-unit is main-program
or external-subprogram
or module
or submodule
or block-data
R1101 rmain-program is [program-stmt |
[specification-part |
[execution-part]
[internal-subprogram-part |
end-program-stmt

R203 external-subprogram is function-subprogram
or subroutine-subprogram
R1225 function-subprogram is function-stmt

[specification-part |
[execution-part]
[internal-subprogram-part |
end-function-stmt
R1233 subroutine-subprogram is subroutine-stmt
[specification-part |
[execution-part]
[internal-subprogram-part |
end-subroutine-stmt
R1104 module is module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt
R1116 submodule is submodule-stmt
[specification-part |
[module-subprogram-part |
end-submodule-stmt
R1120 block-data is block-data-stmt
[specification-part |

© 00 N O O B~ W N =

o o1 o1 g A D DS DD DS D DS D WWWWWWWWWWNNDNDDNNDNDNDNNDNDNNRERERRBKBRRBRFERFR B =2
A W NNEFHEH O O OMNO OGP WNROOOWSNOOPRAWNREOOOOOSNOOGRRERWNROOOWSNOOOGPAWNDNRHEO

13/06-007r1

R204 specification-part

R205 implicit-part

R206 implicit-part-stmt

R207 declaration-construct
R208 execution-part

R209 execution-part-construct
R210 internal-subprogram-part
R211 internal-subprogram
R1107 module-subprogram-part
R1108 module-subprogram
R212 specification-stmt

10

WORKING DRAFT

is

is

is

or
or
or
is

or
or
or
or
or
or
or
or
or
or
is

is
or
or
or
is

is
or
is

is

or
or
is

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

2006/09/25

end-block-data-stmt
[use-stmt | ...

[import-stmt | ...

[implicit-part |

[declaration-construct | ...
[implicit-part-stmt | ...

implicit-stmt
implicit-stmt
parameter-stmt
format-stmt
entry-stmt
derived-type-def
entry-stmt
enum-def
format-stmt
interface-block
macro-definition
parameter-stmt
procedure-declaration-stmt
specification-stmt
type-declaration-stmt
stmit-function-stmt
ezecutable-construct

[execution-part-construct | ...
ezecutable-construct
format-stmt
entry-stmt
data-stmt
contains-stmi

[internal-subprogram | ...
function-subprogram
subroutine-subprogram
contains-stmi

[module-subprogram | ...
function-subprogram
subroutine-subprogram
separate-module-subprogram
access-stmt
allocatable-stmt
asynchronous-stmt
bind-stmt
common-stmt
data-stmt
dimenston-stmt
equivalence-stmt
external-stmt
intent-stmt
mtrinsic-stmt
namelist-stmt
optional-stmt
pointer-stmt
protected-stmt
save-stmi
target-stmt

© 00 N O O B~ W N =

e o
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

2006/09,/25

R213

R214

C201

executable-construct

action-stmt

WORKING DRAFT

or
or
is

or
or
or
or
or
or
or
or
or
is

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

volatile-stmt
value-stmt
action-stmt
associate-construct
block-construct
case-construct
critical-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct
allocate-stmit
assignment-stmt
backspace-stmt
call-stmt
close-stmt
continue-stmt
cycle-stmit
deallocate-stmt
endfile-stmt
end-function-stmt
end-program-stmt
end-subroutine-stmt
exit-stmt
flush-stmt
forall-stmit
goto-stmt

if-stmt
mquire-stmt
notify-stmt
nullify-stmt
open-stmt
pointer-assignment-stmt
print-stmt
query-stmt
read-stmt
return-stmt
rewind-stmt
stop-stmt
sync-all-stmt
sync-images-stmt
sync-memory-stmi
sync-team-stmt
wast-stmt
where-stmt
write-stmt
arithmetic-if-stmt

computed-goto-stmt

13/06-007r1

(R208) An execution-part shall not contain an end-function-stmt, end-program-stmt, or end-

subroutine-stmt.

Additionally, an EXPAND statement may occur anywhere that any statement may occur other than

11

© 00 N O O«

11
12
13

14

15

16
17
18

19
20

21

22
23
24

25

26

27

28
29
30
31
32
33

J3/06-007r1 WORKING DRAFT 2006/09/25

as the first statement of a program unit. The syntax rules are applied to the program after macro
expansion, i.e. with each EXPAND statement replaced by the statements it produces.

2.2 Program unit concepts

2.2.1 Program units and scoping units

Program units are the fundamental components of a Fortran program. A program unit may be
a main program, an external subprogram, a module, a submodule, or a block data program unit. A
subprogram may be a function subprogram or a subroutine subprogram. A module contains definitions
that are to be made accessible to other program units. A submodule is a extension of a module; it may
contain the definitions of procedures declared in a module or another submodule. A block data program
unit is used to specify initial values for data objects in named common blocks. Each type of program
unit is described in Clause 11 or 12. An external subprogram is a subprogram that is not in a main
program, a module, a submodule, or another subprogram. An internal subprogram is a subprogram
that is in a main program or another subprogram. A module subprogram is a subprogram that is in
a module or submodule but is not an internal subprogram.

A program unit consists of a set of nonoverlapping scoping units. A scoping unit is

(1) a program unit or subprogram, excluding any scoping units in it,
(2) a derived-type definition (4.5.2), or
(3) an interface body, excluding any scoping units in it.

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit (often
abbreviated to host). A module or submodule is also the host scoping unit of its child submodules.

2.2.2 Program

A program consists of exactly one main program, any number (including zero) of other kinds of program
units, and any number (including zero) of external procedures and other entities defined by means other
than Fortran.

NOTE 2.2

There is a restriction that there shall be no more than one unnamed block data program unit
(11.3).

This part of ISO/IEC 1539places no ordering requirement on the program units that constitute a
program, but because the public portions of a module are required to be available by the time a
module reference (11.2.2) is processed, a processor may require a particular order of processing of
the program units.

2.2.3 Main program

The Fortran main program is described in 11.1.

2.2.4 Procedure

A procedure encapsulates an arbitrary sequence of actions that may be invoked directly during program
execution. Procedures are either functions or subroutines. A function is a procedure that is invoked
in an expression; its invocation causes a value to be computed which is then used in evaluating the
expression. The variable that returns the value of a function is called the result variable. A subroutine
is a procedure that is invoked in a CALL statement, by a defined assignment statement, or by some
operations on derived-type entities. Unless it is a pure procedure, a subroutine may be used to change

12

10

11

12
13
14

15

16

17
18

19
20

21

22
23
24
25

26

27
28
29
30

31

32
33
34
35
36

2006,/09/25 WORKING DRAFT 13/06-007r1

the program state by changing the values of any of the data objects accessible to the subroutine; unless
it is a pure procedure, a function may do this in addition to computing the function value.

Procedures are described further in Clause 12.

2.2.4.1 External procedure

An external procedure is a procedure that is defined by an external subprogram or by means other
than Fortran. An external procedure may be invoked by the main program or by any procedure of a
program.

2.2.4.2 Module procedure

A module procedure is a procedure that is defined by a module subprogram (R1108). The module or
submodule containing the subprogram is the host scoping unit of the module procedure.

2.2.4.3 Internal procedure

An internal procedure is a procedure that is defined by an internal subprogram (R211). The containing
main program or subprogram is the host scoping unit of the internal procedure. An internal procedure
is local to its host in the sense that the internal procedure is accessible within the host scoping unit and
all its other internal procedures but is not accessible elsewhere.

2.2.4.4 Interface block

An interface body describes an abstract interface or the interface of a dummy procedure, external
procedure, procedure pointer, or type-bound procedure.

An interface block is a specific interface block, an abstract interface block, or a generic interface block.
A specific interface block is a collection of interface bodies. A generic interface block can also be used
to specify that a procedure can be invoked

1) by using a generic name,

(

(2) by using a defined operator,

(3) by using a defined assignment, or
(4) for derived-type input/output.

2.2.5 Module

A module contains (or accesses from other modules) definitions that are to be made accessible to other
program units. These definitions include data object declarations, type definitions, procedure definitions,
and interface blocks. A scoping unit in another program unit may access the definitions in a module.
Modules are further described in Clause 11.

2.2.6 Submodule

A submodule is a program unit that extends a module or another submodule. It may provide definitions
(12.6) for procedures whose interfaces are declared (12.4.3.2) in an ancestor module or submodule. It
may also contain declarations and definitions of other entities, which are accessible in its descendants.
An entity declared in a submodule is not accessible by use association unless it is a module procedure
whose interface is declared in the ancestor module. Submodules are further described in Clause 11.

NOTE 2.3

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by
host association.

13

10
11

12
13

14

15

16
17
18

19

20
21

22

23
24
25

J3/06-007r1 WORKING DRAFT 2006/09/25

2.3 Execution concepts

2.3.1 Statement classification

Each Fortran statement is classified as either an executable statement or a nonexecutable statement.
There are restrictions on the order in which statements may appear in a program unit, and not all
executable statements may appear in all contexts.

2.3.2 Program execution

An instance of a Fortran program is an image. Execution of a program consists of the asynchronous
execution of a fixed number (which may be one) of its images. Each image has its own execution state,
floating point status (14.6), and set of data objects and procedure pointers. Whether a file is available
on any image or only on a specific image is processor dependent. Each image is identified by an image
index, which is an integer value in the range one to the number of images.

NOTE 2.4

The programmer controls the progress of execution in each image through explicit use of Fortran
control constructs (8.1, 8.2). Image control statements (8.5.1) affect the relative progress of exe-
cution between images. Co-arrays (2.4.6) provide a mechanism for accessing data on one image
from another image.

NOTE 2.5

A processor might allow the number of images to be chosen at compile time, link time, or run
time. It might be the same as the number of CPUs but this is not required. Compiling for a
single image might permit the optimizer to eliminate overhead associated with parallel execution.
Portable programs should not make assumptions about the exact number of images. The maximum
number of images may be limited due to architectural constraints.

A team is a set of images formed by invoking the intrinsic collective subroutine FORM_TEAM (13.7.69)
for the purposes of collaboration. A team is identified by a scalar variable of type IMAGE_TEAM
(13.8.3.7).

2.3.3 Executable/nonexecutable statements

Image execution is a sequence, in time, of actions. An executable statement is an instruction to
perform or control one or more of these actions. Thus, the executable statements of a program unit
determine the behavior of the program unit. The executable statements are all of those that make up
the syntactic class executable-construct.

J3 internal note

Unresolved Technical Issue 095

The above definition is incorrect after the addition of the BLOCK construct, since it now includes

the specification statements. It needs to be rewritten more carefully.

Nonexecutable statements do not specify actions; they are used to configure the program environment
in which actions take place. The nonexecutable statements are all those not classified as executable.

2.3.4 Statement order
The syntax rules of clause 2.1 specify the statement order within program units and subprograms. These

rules are illustrated in Table 2.1 and Table 2.2. Table 2.1 shows the ordering rules for statements and
applies to all program units, subprograms, and interface bodies. Vertical lines delineate varieties of

14

g A W N

2006,/09/25 WORKING DRAFT 13/06-007r1

statements that may be interspersed and horizontal lines delineate varieties of statements that shall not
be interspersed. Internal or module subprograms shall follow a CONTAINS statement. Between USE
and CONTAINS statements in a subprogram, nonexecutable statements generally precede executable
statements, although the ENTRY statement, FORMAT statement, and DATA statement may appear
among the executable statements. Table 2.2 shows which statements are allowed in a scoping unit.

Table 2.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,
MODULE, SUBMODULE, or BLOCK DATA statement

USE statements
IMPORT statements
IMPLICIT NONE

PARAMETER IMPLICIT
statements statements
Derived-type definitions,
FORMAT interface blocks,
and PARAMETER | type declaration statements,
ENTRY and DATA enumeration definitions,
statements statements procedure declarations,
specification statements,
and statement function statements
DATA Executable
statements constructs

CONTAINS statement
Internal subprograms

or module subprograms
END statement

Table 2.2: Statements allowed in scoping units

Kind of scoping unit!
Main Module or | Block | External | Module | Internal | Interface

Statement type | program | submodule | data | subprog | subprog | subprog body
USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No No No No No No Yes
ENTRY No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
Misc. decl.s 2 Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No
(1) The scoping unit of a module or submodule does not include any module subprograms
that it contains.

15

0w N o o~ W

10

11
12
13
14
15
16
17
18
19

20

21
22
23

24
25
26
27
28

29
30

31
32

33
34
35
36

J3/06-007r1 WORKING DRAFT 2006/09/25

Statements allowed in scoping units

Kind of scoping unit!
Main Module or | Block | External | Module | Internal | Interface

Statement type | program | submodule | data | subprog | subprog | subprog body

(2) Miscellaneous!declarations are PARAMETER statements, IMPLICIT statements, type
declaration statements, enumeration definitions, procedure declaration statements, and spec-
ification statements.

2.3.5 The END statement

An end-program-stmt, end-function-stmt, end-subroutine-stmt, end-mp-subprogram-stmt, end-module-
stmt, end-submodule-stmt, or end-block-data-stmt is an END statement. Each program unit, module
subprogram, and internal subprogram shall have exactly one END statement. The end-program-stmt,
end-function-stmt, end-subroutine-stmt, and end-mp-subprogram-stmt statements are executable, and
may be branch target statements (8.2). Executing an end-program-stmt causes normal termination of
execution of the program. Executing an end-function-stmt, end-subroutine-stmt, or end-mp-subprogram-
stmt is equivalent to executing a return-stmt with no scalar-int-expr.

The end-module-stmt, end-submodule-stmt, and end-block-data-stmt statements are nonexecutable.

2.3.6 Execution sequence

If a program contains a Fortran main program, execution of the program begins by creating a fixed
number of instances of the program; each image begins execution with the first executable construct of
the main program. The execution of a main program or subprogram involves execution of the executable
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions
within the specification-part of the invoked procedure, if any, are evaluated in a processor dependent
order. Thereafter, execution proceeds to the first executable construct appearing after the invoked
entry point. With the following exceptions, the effect of execution is as if the executable constructs are
executed in the order in which they appear in the main program or subprogram until a STOP, RETURN,
or END statement is executed.

(1) Execution of a branching statement (8.2) changes the execution sequence. These statements
explicitly specify a new starting place for the execution sequence.

(2) CASE constructs, DO constructs, IF constructs, and SELECT TYPE constructs contain
an internal statement structure and execution of these constructs involves implicit internal
branching. See Clause 8 for the detailed semantics of each of these constructs.

(3) BLOCK constructs may contain specification expressions; see 8.1.4 for detailed semantics
of this construct.

(4) END=, ERR=, and EOR= specifiers may result in a branch.

(5 Alternate returns may result in a branch.

Internal subprograms may precede the END statement of a main program or a subprogram. The
execution sequence excludes all such definitions.

The relative ordering of the exeuction sequences of different images can be affected by image control
statements (8.5.1).

Normal termination of execution of an image occurs if a STOP statement is executed on that image. Ex-
ecution of an end-program-stmt results in a synchronization of all images followed by normal termination
of execution of all images. Normal termination of execution of an image also may occur during execution
of a procedure defined by a companion processor (C International Standard 5.1.2.2.3 and 7.20.4.3). If

16

10

11
12

13

14

15

16
17

18

19

20

21
22
23
24
25

26

27

28

29
30
31

32

33

34
35
36

37

2006,/09/25 WORKING DRAFT 13/06-007r1

normal termination of execution occurs within a Fortran program unit and the program incorporates
procedures defined by a companion processor, the process of execution termination shall include the
effect of executing the C exit() function (C International Standard 7.20.4.3).

2.4 Data concepts

Nonexecutable statements are used to specify the characteristics of the data environment. This includes
typing variables, declaring arrays, and defining new types.

2.4.1 Type

A type is a named category of data that is characterized by a set of values, a syntax for denoting
these values, and a set of operations that interpret and manipulate the values. This central concept is
described in 4.1.

A type may be parameterized, in which case the set of data values, the syntax for denoting them, and
the set of operations depend on the values of one or more parameters. Such a parameter is called a type
parameter (4.2).

There are two categories of types: intrinsic types and derived types.

2.4.1.1 Intrinsic type

An intrinsic type is a type that is defined by the language, along with operations, and is always
accessible. The intrinsic types are integer, real, complex, character, logical, and bits. The properties of
intrinsic types are described in 4.4. The intrinsic type parameters are KIND and LEN.

The kind type parameter indicates the representation method for the specified type.

2.4.1.2 Derived type

A derived type is a type that is defined by a type definition or by an intrinsic module. A scalar object of
derived type is called a structure (4.5). Derived types may be parameterized. Assignment of structures
is defined intrinsically (7.4.1.3), but there are no intrinsic operations for structures. For each derived
type, a structure constructor is available to provide values (4.5.10). In addition, data objects of derived
type may be used as procedure arguments and function results, and may appear in input/output lists.
If additional operations are needed for a derived type, they shall be supplied as procedure definitions.

Derived types are described further in 4.5.

2.4.2 Data value

Each intrinsic type has associated with it a set of values that a datum of that type may take, depending
on the values of the type parameters. The values for each intrinsic type are described in 4.4. The values
that objects of a derived type may assume are determined by the type definition, type parameter values,
and the sets of values of its components.

2.4.3 Data entity

A data entity is a data object, the result of the evaluation of an expression, or the result of the execution
of a function reference (called the function result). A data entity has a type and type parameters; it
may have a data value (an exception is an undefined variable). Every data entity has a rank and is thus
either a scalar or an array.

17

~

© 00 N o O

11

12

13

14

15

16

17
18
19
20
21
22

23

24
25

26

27

28
29

J3/06-007r1 WORKING DRAFT 2006/09/25

2.4.3.1 Data object

A data object (often abbreviated to object) is a constant (4.1.2), a variable (6), or a subobject of a
constant. The type and type parameters of a named data object may be specified explicitly (5.2) or
implicitly (5.5).

Subobjects are portions of certain objects that may be referenced and defined (variables only) inde-
pendently of the other portions. These include portions of arrays (array elements and array sections),
portions of character strings (substrings), portions of complex objects (real and imaginary parts), and
portions of structures (components). Subobjects are themselves data objects, but subobjects are refer-
enced only by object designators or intrinsic functions. A subobject of a variable is a variable. Subobjects
are described in Clause 6.

Objects referenced by a name are:

a named scalar (a scalar object)
a named array (an array object)

Subobjects referenced by an object designator are:

an array element (a scalar subobject)
an array section (an array subobject)
a structure component (a scalar or an array subobject)
a substring (a scalar subobject)

2.4.3.1.1 Variable
A variable may have a value and may be defined and redefined during execution of a program.

A named local variable of the scoping unit of a module, submodule, main program, or subprogram,
is a named variable that is a local entity of the scoping unit, is not a dummy argument, is not in
COMMON, does not have the BIND attribute, and is not accessed by use or host association. A named
local variable of a BLOCK construct is a named variable that is declared in that construct, is not in
COMMON, does not have the BIND attribute, and is not accessed by use association.A subobject of a
named local variable is also a local variable.

2.4.3.1.2 Constant

A constant has a value and cannot become defined, redefined, or undefined during execution of a
program. A constant with a name is called a named constant and has the PARAMETER attribute
(5.3.12). A constant without a name is called a literal constant (4.4).

2.4.3.1.3 Subobject of a constant

A subobject of a constant is a portion of a constant. The portion referenced may depend on the
value of a variable.

NOTE 2.6

For example, given:

CHARACTER (LEN
CHARACTER (LEN
INTEGER :: I

10), PARAMETER :: DIGITS = ’0123456789’
1) :: DIGIT

DIGIT = DIGITS (I:I)

18

10

11

12

13
14

15

16
17
18
19
20
21

22

23
24
25
26
27
28

29
30

31

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 2.6 (cont.)
‘ DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS. ‘

2.4.3.2 Expression

An expression (7.1) produces a data entity when evaluated. An expression represents either a data
reference or a computation; it is formed from operands, operators, and parentheses. The type, type
parameters, value, and rank of an expression result are determined by the rules in Clause 7.

2.4.3.3 Function reference

A function reference (12.5.3) produces a data entity when the function is executed during expression
evaluation. The type, type parameters, and rank of a function result are determined by the interface of
the function (12.3.3). The value of a function result is determined by execution of the function.

2.4.4 Scalar
A scalar is a datum that is not an array. Scalars may be of any type.

NOTE 2.7

’ A structure is scalar even if it has arrays as components.

The rank of a scalar is zero. The shape of a scalar is represented by a rank-one array of size zero.

2.4.5 Array

An array is a set of scalar data, all of the same type and type parameters, whose individual elements
are arranged in a rectangular pattern. An array element is one of the individual elements in the array
and is a scalar. An array section is a subset of the elements of an array and is itself an array.

An array may have up to fifteen dimensions, and any extent (number of elements) in any dimension.
The rank of the array is the number of dimensions; its size is the total number of elements, which is
equal to the product of the extents. An array may have zero size. The shape of an array is determined
by its rank and its extent in each dimension, and may be represented as a rank-one array whose elements
are the extents. All named arrays shall be declared, and the rank of a named array is specified in its
declaration. The rank of a named array, once declared, is constant; the extents may be constant or may
vary during execution.

Two arrays are conformable if they have the same shape. A scalar is conformable with any array. Any
intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations
are performed element-by-element to produce a resultant array conformable with the array operands.
Element-by-element operation means corresponding elements of the operand arrays are involved in a
scalar operation to produce the corresponding element in the result array. Such an operation is described
as elemental.

NOTE 2.8

If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8),
the element operations may be performed simultaneously or in any order.

A rank-one array may be constructed from scalars and other arrays and may be reshaped into any
allowable array shape (4.7).

Arrays may be of any type and are described further in 6.2.

19

w

® N o g b

10

11
12

13
14

15

16

17

18
19
20
21

22
23

24

25

26

27

28

29
30

31

J3/06-007r1 WORKING DRAFT 2006/09/25

2.4.6 Co-array

A co-array is a data entity that has nonzero co-rank; it can be directly referenced or defined by any
image. It may be a scalar or an array.

For each co-array on an image, there is a corresponding co-array with the same type, type parameters,
and bounds on every other image. If a co-array is scalar, the set of corresponding co-arrays on all the
images is arranged in a rectangular pattern. If a co-array is an array, the set of corresponding co-array
elements on all the images is arranged in a rectangular pattern. In both cases, the dimensions of the
pattern are called co-dimensions.

A co-array on another image can be accessed directly by using co-subscripts. On its own image, a
co-array can be accessed without use of co-subscripts.

The co-rank of a co-array is the number of co-dimensions. The co-size of a co-array is always equal to
the number of images.

J3 internal note

Unresolved Technical Issue 007

The term ”co-dimension” is not defined. It might be better to define co-array in terms of being

a rectangular set of objects in co-rank ”co-dimensions” etc., similarly to how we define arrays.

An object whose designator includes an image-selector is a co-indexed object. For a co-indexed object,
its co-subscript list determines the image index in the same way that a subscript list determines the
subscript order value for an array element (6.2.2.2).

Intrinsic procedures are provided for mapping between an image index and a list of co-subscripts.

NOTE 2.9

The mechanism for an image to reference and define a co-array on another image might vary
according to the hardware. On a shared-memory machine, a co-array could be implemented as
a section of an array of higher rank. On a distributed-memory machine with separate physical
memory for each image, a processor might store a co-array at the same virtual address in each
physical memory.

2.4.7 Pointer

A data pointer is a data entity that has the POINTER attribute. A procedure pointer is a procedure
entity that has the POINTER attribute. A pointer is either a data pointer or a procedure pointer.

A pointer is associated with a target by pointer assignment (7.4.2). A data pointer may also be
associated with a target by allocation (6.3.1). A pointer is disassociated following execution of a
NULLIFY statement, following pointer assignment with a disassociated pointer, by default initialization,
or by explicit initialization. A data pointer may also be disassociated by execution of a DEALLOCATE
statement. A disassociated pointer is not associated with a target (16.5.2).

A pointer that is not associated shall not be referenced or defined.

If a data pointer is an array, the rank is declared, but the extents are determined when the pointer is
associated with a target.

2.4.8 Storage

Many of the facilities of this part of ISO/IEC 1539make no assumptions about the physical storage
characteristics of data objects. However, program units that include storage association dependent
features shall observe the storage restrictions described in 16.5.3.

20

~N o g »

[ee]

10

11

12
13
14
15

16
17
18
19
20
21

22

23

24

25
26

27

28
29

30

31

32
33

2006,/09/25 WORKING DRAFT 13/06-007r1

2.5 Fundamental terms

For the purposes of this document, the terms and definitions in this subclause apply.

2.5.1 Name and designator

A name is used to identify a program constituent, such as a program unit, named variable, named
constant, dummy argument, or derived type. The rules governing the construction of names are given
in 3.2.1. A designator is a name followed by zero or more component selectors, complex part selectors,
array section selectors, array element selectors, image selectors, and substring selectors.

An object designator is a designator for a data object. A procedure designator is a designator for
a procedure.

NOTE 2.10
’ An object name is a special case of an object designator.

2.5.2 Keyword

The term keyword is used in two ways.

(1) Tt is used to describe a word that is part of the syntax of a statement. These keywords are
not reserved words; that is, names with the same spellings are allowed. In the syntax rules,
such keywords appear literally. In descriptive text, this meaning is denoted by the term
“keyword” without any modifier. Examples of statement keywords are: IF, READ, UNIT,
KIND, and INTEGER.

(2) It is used to denote names that identify items in a list. In actual argument lists, type
parameter lists, and structure constructors, items may be identified by a preceding keyword=
rather than their position within the list. An argument keyword is the name of a dummy
argument in the interface for the procedure being referenced, a type parameter keyword
is the name of a type parameter in the type being specified, and a component keyword
is the name of a component in a structure constructor.

R215 keyword is name

NOTE 2.11

Use of keywords rather than position to identify items in a list can make such lists more readable
and allows them to be reordered. This facilitates specification of a list in cases where optional
items are omitted.

2.5.3 Association

Association is name association (16.5.1), pointer association (16.5.2), storage association (16.5.3),
or inheritance association (16.5.4). Name association is argument association, host association, use
association, linkage association, or construct association.

Storage association causes different entities to use the same storage. Any association permits an entity
to be identified by different names in the same scoping unit or by the same name or different names in
different scoping units.

2.5.4 Declaration

The term declaration refers to the specification of attributes for various program entities. Often this
involves specifying the type of a named data object or specifying the shape of a named array object.

21

© 00 N O O~ W

10

11

12
13

14
15

16

17
18
19

20

21

22

23
24
25
26
27

28
29
30

31

32

33
34
35

36

37

38
39

J3/06-007r1 WORKING DRAFT 2006/09/25

2.5.5 Definition

The term definition is used in two ways.

(1) Tt refers to the specification of derived types, enumerations, and procedures.

(2) When an object is given a valid value during program execution, it becomes defined. This
is often accomplished by execution of an assignment or input statement. When a variable
does not have a predictable value, it is undefined. Similarly, when a pointer is associated
with a target or nullified, its pointer association status is said to become defined. When

the association status of a pointer is not predictable, its pointer association status is said to
be undefined.

Clause 16 describes the ways in which variables may become defined and undefined.

2.5.6 Reference

A data object reference is the appearance of the data object designator in a context requiring its
value at that point during execution.

A procedure reference is the appearance of the procedure designator, operator symbol, or assignment
symbol in a context requiring execution of the procedure at that point. An occurrence of user-defined
derived-type input/output (10.7.6) or derived-type finalization (4.5.6.2) is also a procedure reference.

The appearance of a data object designator or procedure designator in an actual argument list does not
constitute a reference to that data object or procedure unless such a reference is necessary to complete
the specification of the actual argument.

A module reference is the appearance of a module name in a USE statement (11.2.2).

2.5.7 Intrinsic

The qualifier intrinsic has two meanings.

(1) The qualifier signifies that the term to which it is applied is defined in this part of ISO/TEC
1539. Intrinsic applies to types, procedures, modules, assignment statements, and operators.
All intrinsic types, procedures, assignments, and operators may be used in any scoping
unit without further definition or specification. Intrinsic modules may be accessed by use
association. Intrinsic procedures and modules defined in this part of ISO/TEC 1539are called
standard intrinsic procedures and standard intrinsic modules, respectively.

(2) The qualifier applies to procedures or modules that are provided by a processor but are not
defined in this part of ISO/IEC 1539(13, 14, 15.2). Such procedures and modules are called
nonstandard intrinsic procedures and nonstandard intrinsic modules, respectively.

2.5.8 Operator

An operator specifies a computation involving one (unary operator) or two (binary operator) data values
(operands). This part of ISO/IEC 1539specifies a number of intrinsic operators (e.g., the arithmetic
operators +, —, *, /, and ** with numeric operands and the logical operators .AND., .OR., etc. with
logical operands). Additional operators may be defined within a program (4.5.5, 12.4.3.3).

2.5.9 Sequence

A sequence is a set ordered by a one-to-one correspondence with the numbers 1, 2, through n. The
number of elements in the sequence is n. A sequence may be empty, in which case it contains no elements.

22

© 0 N o O

11
12

13

2006,/09/25 WORKING DRAFT 13/06-007r1

The elements of a nonempty sequence are referred to as the first element, second element, etc. The
nth element, where n is the number of elements in the sequence, is called the last element. An empty
sequence has no first or last element.

2.5.10 Companion processors

A processor has one or more companion processors. A companion processor is a processor-dependent
mechanism by which global data and procedures may be referenced or defined. A companion processor
may be a mechanism that references and defines such entities by a means other than Fortran (12.6.3),
it may be the Fortran processor itself, or it may be another Fortran processor. If there is more than
one companion processor, the means by which the Fortran processor selects among them are processor
dependent.

If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this
part of ISO/TEC 1539refers to the C function that defines the procedure, although the procedure need
not be defined by means of the C programming language.

NOTE 2.12

A companion processor might or might not be a mechanism that conforms to the requirements of
the C International Standard.

For example, a processor may allow a procedure defined by some language other than Fortran or
C to be invoked if it can be described by a C prototype as defined in 6.5.5.3 of the C International
Standard.

23

J3/06-007r1 WORKING DRAFT 2006/09/25

24

12
13

14

15

16

17
18

19

20

21

22

23

24

25

26

2006,/09/25 WORKING DRAFT 13/06-007r1

3 Lexical tokens, source form, and macro processing

3.1 Processor character set

The processor character set is processor dependent. Each character in a processor character set is either
a control character or a graphic character. The set of graphics characters is further divided into
letters (3.1.1), digits (3.1.2), underscore (3.1.3), special characters (3.1.4), and other characters (3.1.5).

The letters, digits, underscore, and special characters make up the Fortran character set.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or wunderscore

Except for the currency symbol, the graphics used for the characters shall be as given in 3.1.1, 3.1.2,
3.1.3, and 3.1.4. However, the style of any graphic is not specified.

3.1.1 Letters
The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The set of letters defines the syntactic class letter. The processor character set shall include lower-
case and upper-case letters. A lower-case letter is equivalent to the corresponding upper-case letter in
program units except in a character context (3.3).

NOTE 3.1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

3.1.2 Digits
The ten digits are:
0123456789

The ten digits define the syntactic class digit.

3.1.3 Underscore

R303 wunderscore is _

The underscore may be used as a significant character in a name.

3.1.4 Special characters

25

1

2

10

11
12
13

14

15

16
17

18

19

J3/06-007r1 WORKING DRAFT 2006/09/25

The special characters are shown in Table 3.1.

Table 3.1: Special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ’ Apostrophe

] Right square bracket : Grave accent

{ Left curly bracket - Circumflex accent

} Right curly bracket | Vertical line

, Comma $ Currency symbol
Decimal point or period # Number sign
Colon Q@ Commercial at

The special characters define the syntactic class special-character. Some of the special characters are
used for operator symbols, bracketing, and various forms of separating and delimiting other lexical
tokens.

3.1.5 Other characters

Additional characters may be representable in the processor, but may appear only in comments (3.3.1.1,
3.3.2.1), character constants (4.4.5), input/output records (9.1.1), and character string edit descriptors
(10.3.2).

3.2 Low-level syntax

The low-level syntax describes the fundamental lexical tokens of a program unit. Lexical tokens are
sequences of characters that constitute the building blocks of a program. They are keywords, names,
literal constants other than complex literal constants, operators, labels, delimiters, comma, =, =>, :, ::,
;, and %.

3.2.1 Names

Names are used for various entities such as variables, program units, dummy arguments, named con-
stants, and derived types.

R304 name is letter [alphanumeric-character] ...
C301 (R304) The maximum length of a name is 63 characters.

NOTE 3.2
’ Examples of names:

26

—_
O © 0N O U~ WN

[y
[

—
N

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

2006/09,/25

NOTE 3.2 (cont.)

WORKING DRAFT

13/06-007r1

Al
NAME_LENGTH

TRAILER_

(single underscore)

(two consecutive underscores)

(trailing underscore)

NOTE 3.3

The word “name” always denotes this particular syntactic form. The word “identifier” is used
where entities may be identified by other syntactic forms or by values; its particular meaning
depends on the context in which it is used.

3.2.2

R305

R306

R307
R308

C302
R309

C303

3.2.3

R310

R707
R708

R709

R711
R713

Constants

constant

literal-constant

named-constant
int-constant

is
or
is
or
or
or
or
or
is
is

literal-constant
named-constant
int-literal-constant
real-literal-constant
complezx-literal-constant
logical-literal-constant
char-literal-constant
boz-literal-constant
name

constant

(R308) int-constant shall be of type integer.

char-constant

is

constant

(R309) char-constant shall be of type character.

Operators

intrinsic-operator

power-op
mult-op

add-op

concat-op
rel-op

is

or
or
or
or
or
or
or
or
is

is

or
is

or
is

is

or
or
or
or
or

power-op
mult-op
add-op
concat-op
rel-op
not-op
and-op
or-op

equiv-op
*%

27

© 00 N O O B~ W N =

e S R O T
N o Ol W N = O

—
[ee]

19

20

21

22

23
24

25

26

27

28
29

30
31

32

33

J3/06-007r1 WORKING DRAFT 2006/09/25

or ==
or /=
or <
or <=
or >
or >=

R718 not-op is .NOT.

R719 and-op is .AND.

R720 or-op is .OR.

R721 equiv-op is .EQV.
or .NEQV.
or .XOR.

R311 defined-operator is defined-unary-op
or defined-binary-op
or extended-intrinsic-op

R703 defined-unary-op is . letter [letter]
R723 defined-binary-op is . letter [letter |
R312 extended-intrinsic-op is intrinsic-operator

3.2.4 Statement labels

A statement label provides a means of referring to an individual statement.
R313 label is digit | digit | digit | digit | digit]]]]
C304 (R313) At least one digit in a label shall be nonzero.

If a statement is labeled, the statement shall contain a nonblank character. The same statement label
shall not be given to more than one statement in a scoping unit. Leading zeros are not significant in
distinguishing between statement labels.

NOTE 3.4

For example:

99999
10
010

are all statement labels. The last two are equivalent.

There are 99999 unique statement labels and a processor shall accept any of them as a statement
label. However, a processor may have a limit on the total number of unique statement labels in
one program unit.

Any statement may have a statement label, but the labels are used only in the following ways.

(1) The label on a branch target statement (8.2) is used to identify that statement as the
possible destination of a branch.

(2) The label on a FORMAT statement (10.2.1) is used to identify that statement as the format
specification for a data transfer statement (9.5).

(3) In some forms of the DO construct (8.1.7), the range of the DO construct is identified by
the label on the last statement in that range.

3.2.5 Delimiters

28

10

11
12

13

14
15

16

17
18
19

20

21
22
23

24

25
26

27
28

2006,/09/25 WORKING DRAFT 13/06-007r1

Delimiters are used to enclose syntactic lists. The following pairs are delimiters:

C...)
/o
[]
... D

3.3 Source form

A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments,
and INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit
END statement are not part of that program unit. A Fortran statement is a sequence of one or more
complete or partial lines.

A character context means characters within a character literal constant (4.4.5) or within a character
string edit descriptor (10.3.2).

A comment may contain any character that may occur in any character context.

There are two source forms: free and fixed. Free form and fixed form shall not be mixed in the same program unit.

The means for specifying the source form of a program unit are processor dependent.

3.3.1 Free source form

In free source form there are no restrictions on where a statement (or portion of a statement) may
appear within a line. A line may contain zero characters. If a line consists entirely of characters of
default kind (4.4.5), it may contain at most 132 characters. If a line contains any character that is not
of default kind, the maximum number of characters allowed on the line is processor dependent.

Blank characters shall not appear within lexical tokens other than in a character context or in a format
specification. Blanks may be inserted freely between tokens to improve readability; for example, blanks
may occur between the tokens that form a complex literal constant. A sequence of blank characters
outside of a character context is equivalent to a single blank character.

A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants,
or labels.

NOTE 3.5
For example, the blanks after REAL, READ, 30, and DO are required in the following;:

REAL X
READ 10
30 DO K=1,3

One or more blanks shall be used to separate adjacent keywords except in the following cases, where
blanks are optional:

Adjacent keywords where separating blanks are optional

BLOCK DATA END MODULE
DOUBLE PRECISION END INTERFACE
ELSE IF END PROCEDURE

29

N o a0 W N

10
11
12
13

14
15
16
17

18

19
20

21
22
23
24

25

26

27
28

J3/06-007r1 WORKING DRAFT 2006/09/25

Adjacent keywords where separating blanks are optional

ELSE WHERE END PROGRAM
END ASSOCIATE END SELECT
END BLOCK END SUBMODULE
END BLOCK DATA END SUBROUTINE
END CRITICAL END TYPE

END DO END WHERE

END ENUM GO TO

END FILE IN OUT

END FORALL SELECT CASE
END FUNCTION SELECT TYPE
END IF

3.3.1.1 Free form commentary
The character “!” initiates a comment except where it appears within a character context. The
comment extends to the end of the line. If the first nonblank character on a line is an “!”, the line
is a comment line. Lines containing only blanks or containing no characters are also comment lines.
Comments may appear anywhere in a program unit and may precede the first statement of a program
unit or may follow the last statement of a program unit. Comments have no effect on the interpretation
of the program unit.

NOTE 3.6

The standard does not restrict the number of consecutive comment lines.

3.3.1.2 Free form statement continuation

The character “&” is used to indicate that the current statement is continued on the next line that is not
a comment line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may
occur within a continued statement. When used for continuation, the “&” is not part of the statement.
No line shall contain a single “&” as the only nonblank character or as the only nonblank character
before an “!” that initiates a comment.

If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line,
or the last nonblank character before an “!”. There shall be a later line that is not a comment; the
statement is continued on the next such line. If the first nonblank character on that line is an “&”, the
statement continues at the next character position following that “&”; otherwise, it continues with the
first character position of that line.

If a lexical token is split across the end of a line, the first nonblank character on the first following
noncomment line shall be an “&” immediately followed by the successive characters of the split token.

If a character context is to be continued, an “&” shall be the last nonblank character on the line and
shall not be followed by commentary. There shall be a later line that is not a comment; an “&” shall be
the first nonblank character on the next such line and the statement continues with the next character
following that “&”.

3.3.1.3 Free form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

@.”

A statement may alternatively be terminated by a “;” character that appears other than in a character

“.”

context or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement

30

10

11

12
13
14
15
16
17

18

19

21
22

23

24

25

26
27
28
29
30

31

2006,/09/25 WORKING DRAFT 13/06-007r1

may appear on the same line, or begin on that line and be continued. A sequence consisting only of zero
or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.1.4 Free form statements

A label may precede any statement not forming part of another statement.

NOTE 3.7

’No Fortran statement begins with a digit.

A statement shall not have more than 255 continuation lines.

3.3.2 Fixed source form

In fixed source form, there are restrictions on where a statement may appear within a line. If a source line contains only
default kind characters, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor

dependent.

Except in a character context, blanks are insignificant and may be used freely throughout the program.

3.3.2.1 Fixed form commentary

The character “!” initiates a comment except where it appears within a character context or in character position 6. The
comment extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other
than character position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines
containing only blanks are also comment lines. Comments may appear anywhere in a program unit and may precede the
first statement of the program unit or may follow the last statement of a program unit. Comments have no effect on the

interpretation of the program unit.

NOTE 3.8

’ The standard does not restrict the number of consecutive comment lines.

3.3.2.2 Fixed form statement continuation

Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank
or zero, the line is the initial line of a new statement, which begins in character position 7. If character position 6 contains
any character other than blank or zero, character positions 7-72 of the line constitute a continuation of the preceding
noncomment line.

NOTE 3.9

An “"” or “” in character position 6 is interpreted as a continuation indicator unless it appears within commentary
indicated by a “C” or “*” in character position 1 or by an “!” in character positions 1-5.

Comment lines cannot be continued. Comment lines may occur within a continued statement.

3.3.2.3 Fixed form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

“.
)

A statement may alternatively be terminated by a character that appears other than in a character context, in a

@
)

comment, or in character position 6. The is not part of the statement. After a *;” terminator, another statement may
begin on the same line, or begin on that line and be continued. A *;” shall not appear as the first nonblank character
on an initial line. A sequence consisting only of zero or more blanks and one or more “” terminators, in any order, is

equivalent to a single “;” terminator.

3.3.2.4 Fixed form statements

31

A W N

10

11

12
13
14

15
16
17
18
19
20

21
22

23
24

25

26

27
28

J3/06-007r1 WORKING DRAFT 2006/09/25

A label, if present, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1

through 5 shall be blank. Blanks may appear anywhere within a label. A statement following a on the same line shall

W
)

not be labeled. Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have more
than 255 continuation lines. The program unit END statement shall not be continued. A statement whose initial line

appears to be a program unit END statement shall not be continued.

3.4 Including source text

Additional text may be incorporated into the source text of a program unit during processing. This is
accomplished with the INCLUDE line, which has the form

INCLUDE char-literal-constant
The char-literal-constant shall not have a kind type parameter value that is a named-constant.
An INCLUDE line is not a Fortran statement.

An INCLUDE line shall appear on a single source line where a statement may appear; it shall be the
only nonblank text on this line other than an optional trailing comment. Thus, a statement label is not
allowed.

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line
prior to program processing. Included text may contain any source text, including additional INCLUDE
lines; such nested INCLUDE lines are similarly replaced with the specified source text. The maximum
depth of nesting of any nested INCLUDE lines is processor dependent. Inclusion of the source text
referenced by an INCLUDE line shall not, at any level of nesting, result in inclusion of the same source
text.

When an INCLUDE line is resolved, the first included statement line shall not be a continuation line
and the last included statement line shall not be continued.

The interpretation of char-literal-constant is processor dependent. An example of a possible valid inter-
pretation is that char-literal-constant is the name of a file that contains the source text to be included.

NOTE 3.10

In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose

source form might be either fixed or free, observing the following rules allows the code to be used with either source

form:

(1) Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72;

(2) Treat blanks as being significant;

(3 Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character
position 6;

(4) For continued statements, place an ampersand (&) in both character position 73 of a continued line
and character position 6 of a continuing line.

3.5 Macro processing

3.5.1 Macro definition

A macro definition defines a macro. A defined macro shall only be referenced by a USE statement,
IMPORT statement, or macro expansion statement. A defined macro shall not be redefined.

32

A~ W NN =

[&)]

10
11
12
13

14
15

16

17

18

19
20

21
22

23
24

25
26

27

28

29
30
31
32

33

34
35

36
37
38

39
40

2006,/09/25 WORKING DRAFT 13/06-007r1

R314

R315

C305

R316

macro-definition is define-macro-stmt
[macro-declaration-stmt | ...
macro-body-block
end-macro-stmt

define-macro-stmt is DEFINE MACRO [, macro-attribute-list | :: macro-name R
W [([macro-dummy-arg-name-list |)]

(R315) A macro-dummy-arg-name shall not appear more than once in a macro-dummy-arg-
name-list.

macro-attribute is access-spec

The DEFINE MACRO statement begins the definition of the macro macro-name. Appearance of an
access-spec in the DEFINE MACRO statement explicitly gives the macro the specified attribute. Each
macro-dummy-arg-name is a macro dummy argument. A macro dummy argument is a macro local
variable.

R317

R318
R319
R320

C306

C307

C308

macro-declaration-stmt is macro-type-declaration-stmt
or macro-optional-decl-stmt
macro-type-declaration-stmt is MACRO macro-type-spec :: macro-local-variable-name-list

macro-optional-decl-stmt ~ is MACRO OPTIONAL :: macro-dummy-arg-name-list
macro-type-spec is INTEGER [([KIND= | macro-expr) |

(R318) A macro-local-variable-name shall not be the same as the name of a dummy argument
of the macro being defined.

(R319) A macro-dummy-arg-name shall be the name of a dummy argument of the macro being
defined.

(R320) If macro-expr appears, when the macro is expanded macro-ezpr shall be of type integer,
and have a non-negative value that specifies a representation method that exists on the processor.

A macro type declaration statement specifies that the named entities are macro local variables of the
specified type. If the kind is not specified, they are of default kind. A macro local variable that is not a
macro dummy argument shall appear in a macro type declaration statement.

R321

R322

C309

R323

R324

macro-body-block is [macro-body-construct | ...

macro-body-construct is macro-definition
or expand-stmt
or macro-body-stmt
or macro-do-construct
or macro-if-construct

A statement in a macro definition that is not a macro-body-construct or macro-definition shall
not appear on a line with any other statement.

macro-do-construct is macro-do-stmt
macro-body-block
macro-end-do-stmt

macro-do-stmt is MACRO DO macro-do-variable-name = macro-do-limit , &
B macro-do-limit [, macro-do-limit |

33

16

17

18

19

20

21

22
23

24

25

26
27

28

29

30

31

32

33

34
35

36

J3/06-007r1 WORKING DRAFT 2006/09/25

C310 (R324) A macro-do-variable-name shall be a local variable of the macro being defined, and shall
not be a macro dummy argument.

R325 macro-do-limit is macro-expr
C311 (R325) A macro-do-limit shall expand to an expression of type integer.
R326 macro-end-do-stmt is MACRO END DO

A macro DO construct iterates the expansion of its enclosed macro body block at macro expansion time.
The number of iterations is determined by the values of the expanded macro expressions in the MACRO
DO statement.

R327 macro-if-construct is macro-if-then-stmt
macro-body-block
[macro-else-if-stmt
macro-body-block | ...
[macro-else-stmt
macro-body-block |
macro-end-if-stmt

R328 macro-if-then-stmt is MACRO IF (macro-condition) THEN

R329 macro-else-if-stmt is MACRO ELSE IF (macro-condition) THEN
R330 macro-else-stmt is MACRO ELSE

R331 macro-end-if-stmt is MACRO END IF

R332 macro-condition is macro-expr

€312 (R332) A macro condition shall expand to an expression of type logical.

A macro IF construct provides conditional expansion of its enclosed macro body blocks at macro expan-
sion time. Whether the enclosed macro body blocks contribute to the macro expansion is determined by
the logical value of the expanded macro expressions in the MACRO IF and MACRO ELSE IF statements.

R333 macro-body-stmt is result-token | result-token | ... [&&]

C313 (R333) The first result-token shall not be MACRO unless the second result-token is not a keyword
or name.

R334 result-token is token [%% token | ...

C314 (R334) The concatenated textual tokens in a result-token shall have the form of a lexical token.
R335 token is any lexical token including labels, keywords, and semi-colon.
C315 && shall not appear in the last macro-body-stmt of a macro definition.

C316 When a macro is expanded, the last macro-body-stmt processed shall not end with &&.

R336 end-macro-stmt is END MACRO [macro-name |

C317 (R314) The macro-name in the END MACRO statement shall be the same as the macro-name
in the DEFINE MACRO statement.

R337 macro-expr is basic-token-sequence

C318 (R337) A macro-expr shall expand to a scalar initialization expression.

34

© 0 N O

11
12
13

14

15

16
17

18

19
20

21
22

23
24

25
26
27

28
29
30

31
32

33
34

2006,/09/25 WORKING DRAFT 13/06-007r1

Macro expressions are used to control the behavior of the MACRO DO and MACRO IF constructs when
a macro is being expanded. The type, type parameters, and value of a macro expression are determined
when that macro expression is expanded.

3.56.2 Macro expansion
3.5.2.1 General

Macro expansion is the conceptual replacement of the EXPAND statement with the Fortran statements
that it produces. The semantics of an EXPAND statement are those of the Fortran statements that it
produces. It is recommended that a processor be capable of displaying the results of macro expansion. It
is processor-dependent whether comments in a macro definition appear in the expansion. It is processor-
dependent whether continuations and consecutive blanks that are not part of a token are preserved.

The process of macro expansion produces Fortran statements consisting of tokens. The combined length
of the tokens for a single statement, plus inter-token spacing, shall not be greater than 33280 characters.
If a statement contains any character that is not of default kind, the maximum number of characters
allowed is processor dependent.

NOTE 3.11

This length is so that the result of macro expansion can be formed into valid free form Fortran
source, consisting of an initial line and 255 continuation lines, times 130 which allows for beginning
and ending continuation characters (&) on each line.

Also, breaking tokens across continuation lines in macro definitions and in EXPAND statements
does not affect macro expansion: it is as if they were joined together before replacement.

R338 expand-stmt is EXPAND macro-name | (macro-actual-arg-list)]

C319 (R338) macro-name shall be the name of a macro that was previously defined or accessed via
use or host association.

(€320 (R338) The macro shall expand to a sequence or zero or more complete Fortran statements.

C321 (R338) The statements produced by a macro expansion shall conform to the syntax rules and
constraints as if they replaced the EXPAND statement prior to program processing.

(€322 (R338) The statements produced by a macro expansion shall not include a statement which
ends the scoping unit containing the EXPAND statement.

(€323 (R338) If a macro expansion produces a statement which begins a new scoping unit, it shall also
produce a statement which ends that scoping unit.

(324 (R338) If the EXPAND statement appears as the action-stmt of an if-stmt, it shall expand to
exactly one action-stmt that is not an if-stmt, end-program-stmt, end-function-stmt, or end-
subroutine-stmit.

C325 (R338) If the EXPAND statement appears as a do-term-action-stmt, it shall expand to exactly one action-stmt
that is not a continue-stmt, a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a cycle-stmt, an end-function-

stmt, an end-subroutine-stmt, an end-program-stmt, or an arithmetic-if-stmt.

€326 (R338) If the EXPAND statement has a label, the expansion of the macro shall produce at least
one statement, and the first statement produced shall not have a label.

C327 (R338) A macro-actual-arg shall appear corresponding to each nonoptional macro dummy ar-
gument.

35

10

11
12
13

14

15
16

17
18

19

20
21

22
23

24

25
26

27

28
29
30

31
32
33
34
35
36
37
38

39

40
41
42
43

J3/06-007r1 WORKING DRAFT 2006/09/25

€328 (R338) At most one macro-actual-arg shall appear corresponding to each optional macro dummy
argument.

Expansion of a macro is performed by the EXPAND statement. If the EXPAND statement has a label,
the label is interpreted after expansion as belonging to the first statement of the expansion.

R339 macro-actual-arg is [macro-dummy-name = | macro-actual-arg-value

C329 (R339) macro-dummy-name shall be the name of a macro dummy argument of the macro being
expanded.

€330 (R338) The macro-dummy-name= shall not be omitted unless it has been omitted from each
preceding macro-actual-arg in the expand-stmit.

R340 macro-actual-arg-value is basic-token-sequence

R341 basic-token-sequence is basic-token
or |[basic-token-sequence] nested-token-sequence B
W | basic-token-sequence |
or basic-token basic-token-sequence

R342 basic-token is any lexical token except comma, parentheses, array B
B constructor delimiters, and semi-colon.

R343 nested-token-sequence is ([arg-token] ...")

or (/[arg-token] ... /)

or lbracket | arg-token] ... rbracket
R344 arg-token is basic-token

or ,

Macro expansion processes any macro declarations of the macro definition, and then expands its macro
body block. Any macro expressions in macro-type-specs are evaluated and the kinds of the macro
variables thereby declared are determined for that particular expansion.

Macro expansion of a macro body block processes each macro body construct of the macro body block
in turn, starting with the first macro body construct and ending with the last macro body construct.

Expansion of a statement within a macro body construct consists of three steps:

(1) token replacement,
(2) token concatenation, and
(3) statement-dependent processing.

Token replacement replaces each token of a macro body statement or macro expression that is a macro
local variable with the value of that variable. In a macro expression, a reference to the PRESENT
intrinsic function with a macro dummy argument name as its actual argument is replaced by the token
.TRUE. if the specified macro dummy argument is present, and the token .FALSE. if the specified macro
dummy argument is not present. Otherwise, the value of a macro dummy argument that is present is
the sequence of tokens from the corresponding actual argument. The value of a macro dummy argument
that is not present is a zero-length token sequence. The value of an integer macro variable is its minimal-
length decimal representation; if negative this will produce two tokens, a minus sign and an unsigned
integer literal constant.

Token concatenation is performed with the %% operator, which is only permitted inside a macro defini-
tion. After expansion, each sequence of single tokens separated by %% operators is replaced by a single
token consisting of the concatenated text of the sequence of tokens. The result of a concatenation shall
be a valid Fortran token, and may be a different kind of token from one or more of the original sequence

36

1

© 00 N O O~ W

11
12

13

14
15

17
18
19
20
21
22

23
24
25

34

35
36
37
38
39

2006,/09/25 WORKING DRAFT 13/06-007r1

of tokens.

NOTE 3.12

For example, the sequence

3 %% 14159 %% E %% + %% O

forms the single real literal constant 3.14159E4-0.

3.5.2.2 Macro body statements

Processing a macro body statement produces a whole or partial Fortran statement. A macro body
statement that is either the first macro body statement processed by this macro expansion or the next
macro body statement processed after a macro body statement that did not end with the continuation
generation operator &&, is an initial macro body statement. The next macro body statement processed
after a macro body statement that ends with && is a continuation macro body statement. An initial
macro body statement that does not end with && produces a whole Fortran statement consisting of its
token sequence. All other macro body statements produce partial Fortran statements, and the sequence
of tokens starting with those produced by the initial macro body statement and appending the tokens
produced by each subsequent continuation macro body statement form a Fortran statement. The &&
operators are not included in the token sequence.

3.5.2.3 The macro DO construct

The macro DO construct specifies the repeated expansion of a macro body block. Processing the macro
DO statement performs the following steps in sequence.

(1) The initial parameter m, the terminal parameter mso, and the incrementation parameter
mg are of type integer with the same kind type parameter as the macro-do-variable-name.
Their values are given by the first macro-expr, the second macro-expr, and the third macro-
expr of the macro-do-stmt respectively, including, if necessary, conversion to the kind type
parameter of the macro-do-variable-name according to the rules for numeric conversion
(Table 7.12). If the third macro-expr does not appear, mg has the value 1. The value of m3
shall not be zero.

(2) The macro DO variable becomes defined with the value of the initial parameter m;.

(3) The iteration count is established and is the value of the expression (mg —my +ms)/ms,
unless that value is negative, in which case the iteration count is 0.

After this, the following steps are performed repeatedly until processing of the macro DO construct is
finished.

(1) The iteration count is tested. If it is zero, the loop terminates and processing of the macro
DO construct is finished.

(2) If the iteration count is nonzero, the macro body block of the macro DO construct is
expanded.

(3) The iteration count is decremented by one. The macro DO variable is incremented by the
value of the incrementation parameter mg.

3.5.2.4 The MACRO IF construct

The MACRO IF construct provides conditional expansion of macro body blocks. At most one of the
macro body blocks of the macro IF construct is expanded. The macro conditions of the construct are
evaluated in order until a true value is found or a MACRO ELSE or MACRO END IF statement is
encountered. If a true value or a MACRO ELSE statement is found, the macro body block immediately
following is expanded and this completes the processing of the construct. If none of the evaluated

37

J3/06-007r1 WORKING DRAFT 2006/09/25

conditions is true and there is no MACRO ELSE statement, the processing of the construct is completed
without expanding any of the macro body blocks within the construct.

3.5.2.5 Macro definitions

Processing a macro definition defines a new macro. If a macro definition is produced by a macro expan-
sion, all of the statements of the produced macro definition have token replacement and concatenation
applied to them before the new macro is defined.

3.5.2.6 Examples

NOTE 3.13

This is a macro which loops over an array of any rank and processes each array element.

DEFINE MACRO loop_over(array,rank,traceinfo)
MACRO INTEGER :: i
BLOCK
MACRO DO i=1,rank
INTEGER loop_over_temp_%%i
MACRO END DO
MACRO DO i=1,rank
DO loop_over_temp_%hi=1,size(array,i)
MACRO END DO
CALL impure_scalar_procedure(array(loop_over_temp_%%il &&
MACRO DO i=2,rank
,loop_over_tempi &&
MACRO END DO
) ,traceinfo)
MACRO DO i=1,rank
END DO
MACRO END DO
END BLOCK
END MACRO

NOTE 3.14

One can effectively pass macro names as macro arguments, since expansion of arguments occurs
before analysis of each macro body statement. For example:

DEFINE MACRO :: iterator(count,operation)
MACRO DO i=1,count
EXPAND operation(i)
MACRO END DO
END MACRO

DEFINE MACRO :: process_element(j)

READ *,a(j)

result(j) = process(a(j))

IF (j>1) PRINT *,’difference =’,result(j)-result(j-1)
END MACRO

EXPAND iterator(17,process_element)

This expands into 17 sets of 3 statements:

38

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 3.14 (cont.)

READ *,a(1)

result(l) = process(a(1))

IF (1>1) PRINT *,’difference =’,result(l)-result(i-1)
READ *,a(2)

result(2) = process(a(2))

IF (2>1) PRINT *,’difference =’,result(2)-result(2-1)

READ *,a(17)
result(17) = process(a(17))
IF (17>1) PRINT *,’difference =’,result(17)-result(17-1)

NOTE 3.15

Using the ability to evaluate initialization expressions under macro control and test them, one can
create interfaces and procedures for all kinds of a type, for example:

DEFINE MACRO :: i_square_procs()
MACRO INTEGER i
MACRO DO i=1,1000
MACRO IF (SELECTED_INT_KIND(i)>=0 .AND.
(i==1 .OR. SELECTED_INT_KIND(i)/=SELECTED_INT_KIND(i-1))) THEN
FUNCTION i_square_range_%%i(a) RESULT(r)
INTEGER (SELECTED_INT_KIND(i)) a,r
T = a*xx*2
END FUNCTION
MACRO END IF
MACRO END DO
END MACRO

39

J3/06-007r1 WORKING DRAFT 2006/09/25

40

10

11

12
13
14
15
16

17

18

19

20

21
22

23

24

25
26
27
28

29
30

31

32
33

2006,/09/25 WORKING DRAFT 13/06-007r1

4 Types

4.1 The concept of type

Fortran provides an abstract means whereby data may be categorized without relying on a particular
physical representation. This abstract means is the concept of type.

A type has a name, a set of valid values, a means to denote such values (constants), and a set of
operations to manipulate the values.

A type is either an intrinsic type or a derived type.
This part of ISO/TEC 1539 defines six intrinsic types: integer, real, complex, character, logical, and bits.

A derived type is one that is defined by a derived-type definition (4.5.2) or by an intrinsic module. It
shall be used only where it is accessible (4.5.2.2). An intrinsic type is always accessible.

4.1.1 Set of values

For each type, there is a set of valid values. The set of valid values may be completely determined,
as is the case for logical and bits, or may be determined by a processor-dependent method, as is the
case for integer, character, and real. For complex, the set of valid values consists of the set of all the
combinations of the values of the individual components. For derived types, the set of valid values is as
defined in 4.5.8.

4.1.2 Constants

The syntax for literal constants of each intrinsic type is specified in 4.4.
The syntax for denoting a value indicates the type, type parameters, and the particular value.
A constant value may be given a name (5.3.12, 5.4.10).

A structure constructor (4.5.10) may be used to construct a constant value of derived type from an
appropriate sequence of initialization expressions (7.1.7). Such a constant value is scalar even though it
may have components that are arrays.

4.1.3 Operations

For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically.
These are described in Clause 7. The intrinsic set may be augmented with operations and operators
defined by functions with the OPERATOR interface (12.4.3.2). Operator definitions are described in
Clauses 7 and 12.

For derived types, there are no intrinsic operations. Operations on derived types may be defined by the
program (4.5.11).

4.2 Type parameters

A type may be parameterized. In this case, the set of values, the syntax for denoting the values, and
the set of operations on the values of the type depend on the values of the parameters.

41

w

N o o &

8
9

10

11

12
13
14

15

16
17

18
19

20
21

22

J3/06-007r1 WORKING DRAFT 2006/09/25

The intrinsic types are all parameterized. Derived types may be defined to be parameterized.

A type parameter is either a kind type parameter or a length type parameter. All type parameters are
of type integer.

A kind type parameter may be used in initialization and specification expressions within the derived-type
definition (4.5.2) for the type; it participates in generic resolution (12.5.5.2). Each of the intrinsic types
has a kind type parameter named KIND, which is used to distinguish multiple representations of the
intrinsic type.

NOTE 4.1

The value of a kind type parameter is always known at compile time. Some parameterizations
that involve multiple representation forms need to be distinguished at compile time for practical
implementation and performance. Examples include the multiple precisions of the intrinsic real
type and the possible multiple character sets of the intrinsic character type.

A type parameter of a derived type may be specified to be a kind type parameter in order to
allow generic resolution based on the parameter; that is to allow a single generic to include two
specific procedures that have interfaces distinguished only by the value of a kind type parameter
of a dummy argument. All generic references are resolvable at compile time.

A length type parameter may be used in specification expressions within the derived-type definition for
the type, but it shall not be used in initialization expressions. The intrinsic character type has a length
type parameter named LEN, which is the length of the string.

NOTE 4.2

The adjective “length” is used for type parameters other than kind type parameters because they
often specify a length, as for intrinsic character type. However, they may be used for other
purposes. The important difference from kind type parameters is that their values need not be
known at compile time and might change during execution.

A type parameter value may be specified with a type specification (4.4, 4.5.9).

R401 type-param-value is scalar-int-expr
or *
or

C401 (R401) The type-param-value for a kind type parameter shall be an initialization expression.

C402 (R401) A colon may be used as a type-param-value only in the declaration of an entity or
component that has the POINTER or ALLOCATABLE attribute.

A deferred type parameter is a length type parameter whose value can change during execution of
the program. A colon as a type-param-value specifies a deferred type parameter.

The values of the deferred type parameters of an object are determined by successful execution of an
ALLOCATE statement (6.3.1), execution of an intrinsic assignment statement (7.4.1.3), execution of a
pointer assignment statement (7.4.2), or by argument association (12.5.2).

NOTE 4.3

Deferred type parameters of functions, including function procedure pointers, have no values.
Instead, they indicate that those type parameters of the function result will be determined by
execution of the function, if it returns an allocated allocatable result or an associated pointer
result.

42

g A W N

10

11
12

13

14
15
16
17
18
19

20

21

22

23

24
25

26

27
28

29

30
31
32
33

34

35
36

37
38

2006,/09/25 WORKING DRAFT 13/06-007r1

An assumed type parameter is a length type parameter for a dummy argument that assumes the
type parameter value from the corresponding actual argument; it is also used for an associate name in a
SELECT TYPE construct that assumes the type parameter value from the corresponding selector, and
for a named constant of type character that assumes its length from the initialization-expr. An asterisk
as a type-param-value specifies an assumed type parameter.

4.3 Relationship of types and values to objects

The name of a type serves as a type specifier and may be used to declare objects of that type. A
declaration specifies the type of a named object. A data object may be declared explicitly or implicitly.
Data objects may have attributes in addition to their types. Clause 5 describes the way in which a data
object is declared and how its type and other attributes are specified.

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array
of the same type and type parameters. An array object has a type and type parameters just as a scalar
object does.

A variable is a data object. The type and type parameters of a variable determine which values that
variable may take. Assignment provides one means of defining or redefining the value of a variable of
any type. Assignment is defined intrinsically for all types where the type, type parameters, and shape
of both the variable and the value to be assigned to it are identical. Assignment between objects of
certain differing intrinsic types, type parameters, and shapes is described in Clause 7. A subroutine and
a generic interface (4.5.2, 12.4.3.2) whose generic specifier is ASSIGNMENT (=) define an assignment
that is not defined intrinsically or redefine an intrinsic derived-type assignment (7.4.1.4).

NOTE 4.4

‘ For example, assignment of a real value to an integer variable is defined intrinsically.

The type of a variable determines the operations that may be used to manipulate the variable.

4.3.1 Type specifiers and type compatibility

4.3.1.1 General

A type is specified by a type specifier. In an executable statement, or in an expression within a nonex-
ecutable statement, a type-spec is used. In a nonexecutable statement other than within an expression,
a declaration-type-spec is used.

R402 type-spec is intrinsic-type-spec
or derived-type-spec

C403 (R402) The derived-type-spec shall not specify an abstract type (4.5.7).

R403 declaration-type-spec is intrinsic-type-spec
or TYPE (intrinsic-type-spec)
or TYPE (derived-type-spec)
or CLASS (derived-type-spec)
or CLASS (*)

C404 (R403) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall
be a specification-expr.

C405 (R403) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify
an extensible type (4.5.7).

43

10
11
12
13

14

15

16
17

18

19
20

21
22

23

24
25
26
27

28

29

J3/06-007r1 WORKING DRAFT 2006/09/25

C406 (R403) The TYPE(derived-type-spec) shall not specify an abstract type (4.5.7).

C407 An entity declared with the CLASS keyword shall be a dummy argument or have the ALLO-
CATABLE or POINTER attribute. It shall not have the VALUE attribute.

An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-
spec specifies the named derived type and its type parameter values.

NOTE 4.5

A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE
statement. Elsewhere, a declaration-type-spec is used.

43.1.2 TYPE

A TYPE type specifier is used to declare entities of an intrinsic or derived type.

Where a data entity is declared explicitly using the TYPE type specifier to be of derived type, the
specified derived type shall have been defined previously in the scoping unit or be accessible there by
use or host association. If the data entity is a function result, the derived type may be specified in
the FUNCTION statement provided the derived type is defined within the body of the function or is
accessible there by use or host association. If the derived type is specified in the FUNCTION statement
and is defined within the body of the function, it is as if the function result variable was declared with
that derived type immediately following the derived-type-def of the specified derived type.

4.3.1.3 CLASS

A polymorphic entity is a data entity that is able to be of differing types during program execution.
The type of a data entity at a particular point during execution of a program is its dynamic type. The
declared type of a data entity is the type that it is declared to have, either explicitly or implicitly.

A CLASS type specifier is used to declare polymorphic entities. The declared type of a polymorphic
entity is the specified type if the CLASS type specifier contains a type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. An unlimited
polymorphic entity is not declared to have a type. It is not considered to have the same declared type
as any other entity, including another unlimited polymorphic entity.

A nonpolymorphic entity is type compatible only with entities of the same declared type. A poly-
morphic entity that is not an unlimited polymorphic entity is type compatible with entities of the same
declared type or any of its extensions. Even though an unlimited polymorphic entity is not considered
to have a declared type, it is type compatible with all entities. An entity is type compatible with a type
if it is type compatible with entities of that type.

Two entities are type incompatible if neither is type compatible with the other.

NOTE 4.6
Given

TYPE TROOT
TYPE,EXTENDS (TROOT) :: TEXTENDED

CLASS(TROOT) A
CLASS (TEXTENDED) B

44

w

© 0o N O O

11

12

13
14

15
16

17

18
19
20
21
22
23
24

25

26
27

28

29
30
31
32
33
34
35
36

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 4.6 (cont.)
’ A is type compatible with B but B is not type compatible with A. ‘

A polymorphic allocatable object may be allocated to be of any type with which it is type compatible.
A polymorphic pointer or dummy argument may, during program execution, be associated with objects
with which it is type compatible.

The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated.
The dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic
type of a nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its associated
actual argument. The dynamic type of an unallocated allocatable or a disassociated pointer is the same
as its declared type. The dynamic type of an entity identified by an associate name (8.1.3) is the dynamic
type of the selector with which it is associated. The dynamic type of an object that is not polymorphic
is its declared type.

NOTE 4.7

Only components of the declared type of a polymorphic object may be designated by component
selection (6.1.2).

4.4 Intrinsic types

4.4.1 Classification and specification

Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer,
real, and complex. The nonnumeric intrinsic types are character, logical, and bits.

The numeric types are provided for numerical computation. The normal operations of arithmetic,
addition (4), subtraction (-), multiplication (*), division (/), exponentiation (**), identity (unary +),
and negation (unary —), are defined intrinsically for the numeric types.

R404 intrinsic-type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector |
or LOGICAL [kind-selector]
or BITS [kind-selector]
R405 kind-selector is ([KIND =] scalar-int-initialization-expr)

C408 (R405) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-
resentation method that exists on the processor.

4.4.2 Integer type

The set of values for the integer type is a subset of the mathematical integers. The processor shall
provide one or more representation methods that define sets of values for data of type integer. Each
such method is characterized by a value for a type parameter called the kind type parameter; this kind
type parameter is of type default integer. The kind type parameter of a representation method is returned
by the intrinsic inquiry function KIND (13.7.96). The decimal exponent range of a representation method
is returned by the intrinsic function RANGE (13.7.143). The intrinsic function SELECTED_INT_KIND
(13.7.153) returns a kind value based on a specified decimal range requirement. The integer type includes
a zero value, which is considered to be neither negative nor positive. The value of a signed integer zero
is the same as the value of an unsigned integer zero.

45

10
11
12
13
14
15

16

17

18
19

20
21

22

23

24
25
26
27

28
29

30
31

J3/06-007r1 WORKING DRAFT 2006/09/25

The processor shall provide at least one representation method with a decimal exponent range greater
than or equal to 18.

The type specifier for the integer type uses the keyword INTEGER.

If the kind type parameter is not specified, the default kind value is KIND (0) and the type specified is
default integer. The decimal exponent range of default integer shall be at least 5.

Any integer value may be represented as a signed-int-literal-constant.

R406 signed-int-literal-constant ~ is [sign | int-literal-constant

R407 int-literal-constant is digit-string | - kind-param |
R408 kind-param is digit-string

or scalar-int-constant-name
R409 signed-digit-string is [sign | digit-string
R410 digit-string is digit | digit] ...
R411 sign is +

or —

C409 (R408) A scalar-int-constant-name shall be a named constant of type integer.
C410 (R408) The value of kind-param shall be nonnegative.

C411 (R407) The value of kind-param shall specify a representation method that exists on the pro-
CessOor.

The optional kind type parameter following digit-string specifies the kind type parameter of the integer
constant; if it is not present, the constant is of type default integer.

An integer constant is interpreted as a decimal value.

NOTE 4.8

Examples of signed integer literal constants are:

473

+56

-101

21_2

21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant.

4.4.3 Real type

The real type has values that approximate the mathematical real numbers. The processor shall provide
two or more approximation methods that define sets of values for data of type real. Each such method
has a representation method and is characterized by a value for a type parameter called the kind
type parameter; this kind type parameter is of type default integer. The kind type parameter of an
approximation method is returned by the intrinsic inquiry function KIND (13.7.96).

The decimal precision, decimal exponent range, and radix of an approximation method are returned by
the intrinsic functions PRECISION (13.7.137), RANGE (13.7.143), and RADIX (13.7.140). The intrinsic
function SELECTED_REAL_KIND (13.7.154) returns a kind value based on specified precision, range,

46

w

~N o o b

10
11
12
13
14

15
16

17

18
19
20
21
22
23
24

25

2006,/09/25 WORKING DRAFT 13/06-007r1

and radix requirements.

NOTE 4.9
See C.1.1 for remarks concerning selection of approximation methods.

The real type includes a zero value. Processors that distinguish between positive and negative zeros
shall treat them as mathematically equivalent

(1) in all relational operations,

(2) asactual arguments to intrinsic procedures other than those for which it is explicitly specified
that negative zero is distinguished, and

(3) as the scalar-numeric-expr in an arithmetic IF.

NOTE 4.10
On a processor that can distinguish between 0.0 and —0.0,

(X > 0.0)

evaluates to true if X = 0.0 or if X = —0.0,
(X<0.0)

evaluates to false for X = —0.0, and
IF (X) 1,2,3

causes a transfer of control to the branch target statement with the statement label “2” for both X = 0.0 and X =
—0.0.

In order to distinguish between 0.0 and —0.0, a program should use the SIGN function.
SIGN(1.0,X) will return —1.0 if X < 0.0 or if the processor distinguishes between 0.0 and —0.0
and X has the value —0.0.

The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an
alternate specifier for one kind of real type.

If the type keyword REAL is specified and the kind type parameter is not specified, the default kind
value is KIND (0.0) and the type specified is default real. If the type keyword DOUBLE PRECISION
is specified, the kind value is KIND (0.0D0) and the type specified is double precision real. The
decimal precision of the double precision real approximation method shall be greater than that of the
default real method.

The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall
be at least 37. It is recommended that the decimal precision of default real be at least 6, and that its
decimal exponent range be at least 37.

R412 signed-real-literal-constant is [sign | real-literal-constant

R413 real-literal-constant is significand | exponent-letter exponent | [- kind-param]
or digit-string exponent-letter exponent [_ kind-param |
R414 significand is digit-string . [digit-string |
or . digit-string
R415 exponent-letter is E
or D
R416 exponent is signed-digit-string

47

w

N o o &

[ee]

10
11

12

13
14

15

16
17
18
19

20

21
22
23

24

25
26
27
28
29
30
31

J3/06-007r1 WORKING DRAFT 2006/09/25

C412 (R413) If both kind-param and exponent-letter are present, exponent-letter shall be E.

C413 (R413) The value of kind-param shall specify an approximation method that exists on the
processor.

A real literal constant without a kind type parameter is a default real constant if it is without an
exponent part or has exponent letter E, and is a double precision real constant if it has exponent letter
D. A real literal constant written with a kind type parameter is a real constant with the specified kind
type parameter.

The exponent represents the power of ten scaling to be applied to the significand or digit string. The
meaning of these constants is as in decimal scientific notation.

The significand may be written with more digits than a processor will use to approximate the value of
the constant.

NOTE 4.11
Examples of signed real literal constants are:

-12.78
+1.6E3

2.1

-16.E4_8
0.45D-4
10.93E7_QUAD
.123

3E4

where QUAD is a scalar integer named constant.

4.4.4 Complex type

The complex type has values that approximate the mathematical complex numbers. The values of a
complex type are ordered pairs of real values. The first real value is called the real part, and the second
real value is called the imaginary part.

Each approximation method used to represent data entities of type real shall be available for both the
real and imaginary parts of a data entity of type complex. A kind type parameter may be specified for
a complex entity and selects for both parts the real approximation method characterized by this kind
type parameter value; this kind type parameter is of type default integer. The kind type parameter of
an approximation method is returned by the intrinsic inquiry function KIND (13.7.96).

The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double
precision complex. If the type keyword COMPLEX is specified and the kind type parameter is not
specified, the default kind value is the same as that for default real, the type of both parts is default
real, and the type specified is default complex.

R417 complex-literal-constant is (real-part , imag-part)

R418 real-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

R419 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

48

[ay

N o o~ W N

[ee]

10
11

12

13

14
15
16

17

18
19
20
21
22
23

24

25
26
27

28

29

30

31
32

33
34

2006,/09/25 WORKING DRAFT 13/06-007r1

C414 (R417) Each named constant in a complex literal constant shall be of type integer or real.

If the real part and the imaginary part of a complex literal constant are both real, the kind type
parameter value of the complex literal constant is the kind type parameter value of the part with the
greater decimal precision; if the precisions are the same, it is the kind type parameter value of one of the
parts as determined by the processor. If a part has a kind type parameter value different from that of
the complex literal constant, the part is converted to the approximation method of the complex literal
constant.

If both the real and imaginary parts are integer, they are converted to the default real approximation
method and the constant is of type default complex. If only one of the parts is an integer, it is converted
to the approximation method selected for the part that is real and the kind type parameter value of the
complex literal constant is that of the part that is real.

NOTE 4.12

Examples of complex literal constants are:

(1.0, -1.0)

(3, 3.1E6)
(4.0_4, 3.6E7_8)
(0., PI)

where PI is a previously declared named real constant.

4.4.5 Character type
4.4.5.1 Character sets

The character type has a set of values composed of character strings. A character string is a sequence
of characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The
number of characters in the string is called the length of the string. The length is a type parameter; its
kind is processor-dependent and its value is greater than or equal to zero.

The processor shall provide one or more representation methods that define sets of values for data
of type character. Each such method is characterized by a value for a type parameter called the kind
type parameter; this kind type parameter is of type default integer. The kind type parameter of a rep-
resentation method is returned by the intrinsic inquiry function KIND (13.7.96). The intrinsic function
SELECTED_CHAR _KIND (13.7.152) returns a kind value based on the name of a character type. Any
character of a particular representation method representable in the processor may occur in a character
string of that representation method.

The character set defined by ISO/IEC 646:1991 (International Reference Version) is referred to as the
ASCII character set and its corresponding representation method is the ASCII character type.
The character set defined by ISO/TEC 10646-1:2000 UCS-4 is referred to as the ISO 10646 character
set and its corresponding representation method is the ISO 10646 character type.

4.4.5.2 Character type specifier
The type specifier for the character type uses the keyword CHARACTER.

If the kind type parameter is not specified, the default kind value is KIND ("A’) and the type specified
is default character.

The default character kind shall support a character set that includes the Fortran character set. By sup-
plying nondefault character kinds, the processor may support additional character sets. The characters

49

N

© 00 N O O~ W

11
12
13

14
15

16

17

18

19

20
21

22
23
24

25
26

27

28
29

30
31

32
33

34
35
36
37
38

39

40
41

42
43

J3/06-007r1 WORKING DRAFT 2006/09/25

available in nondefault character kinds are not specified by this standard, except that one character in
each nondefault character set shall be designated as a blank character to be used as a padding character.

R420 char-selector is length-selector
or (LEN = type-param-value , R
B KIND = scalar-int-initialization-expr)
or (type-param-value , M
B | KIND = | scalar-int-initialization-expr)
or (KIND = scalar-int-initialization-expr
B [, LEN =type-param-value |)

R421 length-selector is ([LEN =] type-param-value)
or * char-length [,]
R422 char-length is (type-param-value)

or scalar-int-literal-constant

C415 (R420) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-
resentation method that exists on the processor.

C416 (R422) The scalar-int-literal-constant shall not include a kind-param.

C417 R422) A type-param-value in a char-length shall be a colon, asterisk, or specification-expr.

(1 to declare a dummy argument,
(2

(

(
(
C418 (R420 R421 R422) A type-param-value of * shall be used only
)
) to declare a named constant,

)

w

in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy
argument of type CHARACTER with an assumed character length,

(4) in the type-spec or derived-type-spec of a type guard statement (8.1.9), or

(5) in an external function, to declare the character length parameter of the function result.

C419 A function name shall not be declared with an asterisk type-param-value unless it is of type CHAR-

ACTER and is the name of the result of an external function or the name of a dummy function.
C420 A function name declared with an asterisk type-param-value shall not be an array, a pointer, recursive, or pure.

C421 (R421) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-

stmt.

C422 (R421) The optional comma in a length-selector is permitted only if no double-colon separator appears in the

type-declaration-stmt.

C423 (R420) The length specified for a character statement function or for a statement function dummy argument of

type character shall be an initialization expression.

The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in
a component-decl of a type definition specify character length. The * char-length in an entity-decl or
a component-decl specifies an individual length and overrides the length specified in the char-selector,
if any. If a * char-length is not specified in an entity-decl or a component-decl, the length-selector or
type-param-value specified in the char-selector is the character length. If the length is not specified in a
char-selector or a * char-length, the length is 1.

If the character length parameter value evaluates to a negative value, the length of character entities
declared is zero. A character length parameter value of : indicates a deferred type parameter (4.2). A
char-length type parameter value of * has the following meanings.

(1) If used to declare a dummy argument of a procedure, the dummy argument assumes the
length of the associated actual argument.

50

© 0 N O O~ W N

10

11
12

13
14

15
16

17
18

19
20

21
22
23

24

25
26
27
28

29

30
31
32

33
34

2006,/09/25 WORKING DRAFT 13/06-007r1

(2) If used to declare a named constant, the length is that of the constant value.

(3) If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length
from the associated actual argument.

(4) If used in the type-spec of a type guard statement, the associating entity assumes its length
from the selector.

(5) If used to specify the character length parameter of a function result, any scoping unit invoking the function
shall declare the function name with a character length parameter value other than * or access such a
definition by host or use association. When the function is invoked, the length of the result variable in the

function is assumed from the value of this type parameter.

4.4.5.3 Character literal constant

A character literal constant is written as a sequence of characters, delimited by either apostrophes
or quotation marks.

R423 char-literal-constant is [kind-param _ |’ [rep-char] ... ’
or [kind-param _] " [rep-char] .. "

C424 (R423) The value of kind-param shall specify a representation method that exists on the pro-
CEssor.

The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of
the character constant; if it is not present, the constant is of type default character.

For the type character with kind kind-param, if present, and for type default character otherwise, a
representable character, rep-char, is defined as follows.

(1) In free source form, it is any graphic character in the processor-dependent character set.

(2) In fixed source form, it is any character in the processor-dependent character set. A processor may restrict

the occurrence of some or all of the control characters.

NOTE 4.13

FoORTRAN 77 allowed any character to occur in a character context. This standard allows a source
program to contain characters of more than one kind. Some processors may identify characters
of nondefault kinds by control characters (called “escape” or “shift” characters). It is difficult, if
not impossible, to process, edit, and print files where some occurences of control characters have
their intended meaning and some occurrences might not. Almost all control characters have uses
or effects that effectively preclude their use in character contexts and this is why free source form
allows only graphic characters as representable characters. Nevertheless, for compatibility with FORTRAN

77, control characters remain permitted in principle in fixed source form.

The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.

An apostrophe character within a character constant delimited by apostrophes is represented by two
consecutive apostrophes (without intervening blanks); in this case, the two apostrophes are counted as
one character. Similarly, a quotation mark character within a character constant delimited by quotation
marks is represented by two consecutive quotation marks (without intervening blanks) and the two
quotation marks are counted as one character.

A zero-length character literal constant is represented by two consecutive apostrophes (without inter-
vening blanks) or two consecutive quotation marks (without intervening blanks) outside of a character
context.

The intrinsic operation concatenation (//) is defined between two data entities of type character (7.2.3)
with the same kind type parameter.

51

g~ W N

10
11
12
13

14

15
16

17
18

19

J3/06-007r1 WORKING DRAFT 2006/09/25

NOTE 4.14

Examples of character literal constants are:

llDON}TII
7DON7 7T7

both of which have the value DON’T and

which has the zero-length character string as its value.

NOTE 4.15

An example of a nondefault character literal constant, where the processor supports the corre-
sponding character set, is:

NIHONGO_ & & L TR T Ay

where NIHONGO is a named constant whose value is the kind type parameter for Nihongo
(Japanese) characters. This means “Without her, nothing is possible”.

4.4.5.4 Collating sequence

The processor defines a collating sequence for the character set of each kind of character. A collating
sequence is a one-to-one mapping of the characters into the nonnegative integers such that each charac-
ter corresponds to a different nonnegative integer. The intrinsic functions CHAR (13.7.30) and ICHAR
(13.7.84) provide conversions between the characters and the integers according to this mapping.

NOTE 4.16

For example:

ICHAR (°X’)

returns the integer value of the character "X’ according to the collating sequence of the processor.

The collating sequence of the default character type shall satisfy the following constraints.

(1) ICHAR ("A’) < ICHAR ('B’) < ... < ICHAR (’Z’) for the twenty-six upper-case letters.
(2) ICHAR (’0’) < ICHAR (’'1’) < ... < ICHAR (’9’) for the ten digits.
(3) ICHAR () < ICHAR ('0') < ICHAR ('9') < ICHAR (‘A") or
ICHAR (' *) < ICHAR ('A’) < ICHAR ('Z’) < ICHAR ('0).
(4) ICHAR ('a’) < ICHAR (’P’) < ... < ICHAR (’2’) for the twenty-six lower-case letters.
(
(

(5) ICHAR (") < ICHAR ('0") <ICHAR(") < ICHAR (&) or
ICHAR (' °) < ICHAR ('a’) < ICHAR ('z") < ICHAR ('0").

Except for blank, there are no constraints on the location of the special characters and underscore in
the collating sequence, nor is there any specified collating sequence relationship between the upper-case
and lower-case letters.

The collating sequence for the ASCII character type is as defined by ISO/IEC 646:1991 (International
Reference Version); this collating sequence is called the ASCII collating sequence in this standard.
The collating sequence for the ISO 10646 character type is as defined by ISO/IEC 10646-1:2000.

52

© 0 N O

10

11
12

13
14

15
16

17
18

19
20
21
22
23

24

25
26
27
28
29

30

31

32
33

34
35

36

37

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 4.17

The intrinsic functions ACHAR (13.7.2) and TACHAR (13.7.77) provide conversion between char-
acters and corresponding integer values according to the ASCII collating sequence.

The intrinsic functions LGT, LGE, LLE, and LLT (13.7.101-13.7.104) provide comparisons between
strings based on the ASCII collating sequence. International portability is guaranteed if the set of
characters used is limited to the letters, digits, underscore, and special characters.

4.4.6 Logical type
The logical type has two values, which represent true and false.

The processor shall provide one or more representation methods for data of type logical. Each such
method is characterized by a value for a type parameter called the kind type parameter; this kind type
parameter is of type default integer. The kind type parameter of a representation method is returned
by the intrinsic inquiry function KIND (13.7.96).

The type specifier for the logical type uses the keyword LOGICAL.

If the kind type parameter is not specified, the default kind value is KIND (.FALSE.) and the type
specified is default logical.

R424 logical-literal-constant is .TRUE. | _ kind-param]
or .FALSE. [_ kind-param |

C425 (R424) The value of kind-param shall specify a representation method that exists on the pro-
Cessor.

The optional kind type parameter following the trailing delimiter specifies the kind type parameter of
the logical constant; if it is not present, the constant is of type default logical.

The intrinsic operations defined for data entities of logical type are: negation (.NOT.), conjunction
(.AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (.NEQV.)
as described in 7.2.5. There is also a set of intrinsically defined relational operators that compare the
values of data entities of other types and yield a value of type default logical. These operations are
described in 7.2.4.

4.4.7 Bits type

The bits type has a set of values composed of ordered sequences of bits. The number of bits in
the sequence is specified by the kind type parameter, which shall be greater than or equal to zero.
The processor shall provide representation methods with kind type parameter values equal to every
nonnegative integer less than or equal to a processor-determined limit. This limit shall be at least as
large as the storage size, expressed in bits, of every supported kind of type integer, real, complex, and
logical. Additional representation methods may be provided.

The type specifier for the bits type uses the keyword BITS.

If the kind type parameter is not specified for a bits variable, the default kind value is the size of a
numeric storage unit expressed in bits, and the type specified is default bits.

R425 boz-literal-constant is binary-constant | _ kind-param]
or octal-constant | _ kind-param]
or hex-constant [_ kind-param]

R426 binary-constant is B’ digit [digit] ... ’

53

© 0 N O

11
12
13
14

15
16

17
18
19
20
21

22
23
24

25
26
27

28

29

30

31
32

J3/06-007r1 WORKING DRAFT 2006/09/25

or B " digit [digit] ... "

C426 (R426) digit shall have one of the values 0 or 1.

R427 octal-constant is O digit [digit] ... ’
or O " digit | digit] ... "
C427 (RA427) digit shall have one of the values 0 through 7.

R428 hez-constant is 7’ hex-digit | hex-digit] ... ?

R429 hex-digit is digit
or A
or B
or C
or D
or E
or F

The hex-digits A through F represent the numbers ten through fifteen, respectively; they may be repre-
sented by their lower-case equivalents.

If the optional kind type parameter is not specified for a boz literal constant, the kind value is assumed
from the form of the constant. If the constant is a binary-constant the kind value is the number
of digit characters. If the constant is an octal-constant the kind value is three times the number of
digit characters. If the constant is a hez-constant the kind value is four times the number of hex-digit
characters.

NOTE 4.18

Even if a bits value is too large to fit into a single statement as a literal constant, it can be
constructed by concatenation of bits named constants.

Each digit of an octal constant represents three bits, and each hex digit of a hex constant represents
four bits, according to their numerical representations as binary integers, with leading zero bits where
needed.

If a kind-param is specified for a boz literal constant and has a value greater than the number of bits
specified by its digits, the constant is padded on the left (13.3) with enough zero bits to create a constant
of kind kind-param. If the kind-param specified has a value smaller the number of bits specified by its
digits, only the rightmost kind-param bits are used to determine the value of the constant.

NOTE 4.19

Though the processor is required to provide bit kinds only up to four times the size of a numeric
storage unit, or up to the maximum intrinsic type size (whichever is larger), it is expected that the
actual size limit will be much larger, based on system capacity constraints. Use of BITS objects
with KIND values equal to small integer multiples of NUMERIC_STORAGE_SIZE should result
in more efficient execution.

4.5 Derived types

4.5.1 Derived type concepts

Additional types may be derived from the intrinsic types and other derived types. A type definition is
required to define the name of the type and the names and attributes of its components and type-bound

54

10
11

12

13
14

15

16

17
18
19
20
21
22
23
24
25
26
27

28

29
30

31

2006,/09/25 WORKING DRAFT 13/06-007r1

procedures.

A derived type may be parameterized by multiple type parameters, each of which is defined to be either
a kind or length type parameter and may have a default value.

The ultimate components of an object of derived type are the components that are of intrinsic type
or have the POINTER or ALLOCATABLE attribute, plus the ultimate components of the components
of the object that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.

NOTE 4.20

The ultimate components of objects of the derived type kids defined below are name, age, and
other_kids.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

The direct components of an object of derived type are the components of that object, plus the direct
components of the components of the object that are of derived type and have neither the ALLOCAT-
ABLE nor POINTER attribute.

By default, no storage sequence is implied by the order of the component definitions. However, a storage
order is implied for a sequence type (4.5.2.3). If the derived type has the BIND attribute, the storage
sequence is that required by the companion processor (2.5.10, 15.3.4).

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE property, a scalar
entity of the type is a sequence structure.

4.5.2 Derived-type definition
4.5.2.1 Syntax

R430 derived-type-def is derived-type-stmt
[type-param-def-stmt | ...
[private-or-sequence | ...
[component-part |
[type-bound-procedure-part |
end-type-stmt

R431 derived-type-stmt is TYPE [[, type-attr-spec-list | :: | type-name A
B | (type-param-name-list) |
R432 type-attr-spec is ABSTRACT
or access-spec
or BIND (C)

or EXTENDS (parent-type-name)

C428 (R431) A derived type type-name shall not be DOUBLEPRECISION or the same as the name
of any intrinsic type defined in this part of ISO/TEC 1539.

C429 (R431) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.

55

10
11

12

13
14

15

16

17
18
19
20

21

22
23

24
25

J3/06-007r1 WORKING DRAFT 2006/09/25

C430 (R432) A parent-type-name shall be the name of a previously defined extensible type (4.5.7).

C431 (R430) If the type definition contains or inherits (4.5.7.2) a deferred binding (4.5.5), ABSTRACT
shall appear.

C432 (R430) If ABSTRACT appears, the type shall be extensible.
C433 (R430) If EXTENDS appears, SEQUENCE shall not appear.

C434 (R430) If EXTENDS appears and the type being defined has a co-array ultimate component,
its parent type shall have a co-array ultimate component.

R433 private-or-sequence is private-components-stmt
or sequence-stmt

C435 (R430) The same private-or-sequence shall not appear more than once in a given derived-type-
def .

R434 end-type-stmt is END TYPE [type-name]

C436 (R434) If END TYPE is followed by a type-name, the type-name shall be the same as that in
the corresponding derived-type-stmit.

Derived types with the BIND attribute are subject to additional constraints as specified in 15.3.4.

NOTE 4.21

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN

4.5.2.2 Accessibility

Types that are defined in a module or accessible in that module by use association have either the
PUBLIC or PRIVATE attribute. Types for which an access-spec is not explicitly specified in that
module have the default accessibility attribute for that module. The default accessibility attribute for a
module is PUBLIC unless it has been changed by a PRIVATE statement (5.4.1). Only types that have
the PUBLIC attribute in that module are available to be accessed from that module by use association.

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and
bindings.

If a type definition is private, then the type name, and thus the structure constructor (4.5.10) for the
type, are accessible only within the module containing the definition, and within its descendants.

NOTE 4.22
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC

56

© 00 N O

11
12

13

14
15

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 4.22 (cont.)

CHARACTER (LEN = 20) :: MESSAGE
END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its
descendants.

4.5.2.3 Sequence type
R435 sequence-stmt is SEQUENCE

C437 (R439) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type
or of a sequence derived type.

C438 (R430) If SEQUENCE appears, a type-bound-procedure-part shall not appear.

If the SEQUENCE statement appears, the type is a sequence type. The order of the component
definitions in a sequence type specifies a storage sequence for objects of that type. The type is a
numeric sequence type if there are no type parameters, no pointer or allocatable components, and
each component is of type default integer, default real, double precision real, default complex, default
logical, default bits, or a numeric sequence type. The type is a character sequence type if there
are no type parameters, no pointer or allocatable components, and each component is of type default
character or a character sequence type.

NOTE 4.23

An example of a numeric sequence type is:

TYPE NUMERIC_SEQ

SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL

LOGICAL :: LOG_VAL
END TYPE NUMERIC_SEQ

NOTE 4.24

A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE
statement, the use of this terminology in no way implies that these components are stored in
this, or any other, order. Nor is there any requirement that contiguous storage be used. The
sequence merely refers to the fact that in writing the definitions there will necessarily be an order
in which the components appear, and this will define a sequence of components. This order is of
limited significance because a component of an object of derived type will always be accessed by
a component name except in the following contexts: the sequence of expressions in a derived-type
value constructor, intrinsic assignment, the data values in namelist input data, and the inclusion
of the structure in an input/output list of a formatted data transfer, where it is expanded to this
sequence of components. Provided the processor adheres to the defined order in these cases, it is
otherwise free to organize the storage of the components for any nonsequence structure in memory
as best suited to the particular architecture.

4.5.2.4 Determination of derived types

Derived-type definitions with the same type name may appear in different scoping units, in which case
they may be independent and describe different derived types or they may describe the same type.

57

0 N O O~ W N =

J3/06-007r1 WORKING DRAFT 2006/09/25

Two data entities have the same type if they are declared with reference to the same derived-type
definition. The definition may be accessed from a module or from a host scoping unit. Data entities in
different scoping units also have the same type if they are declared with reference to different derived-type
definitions that specify the same type name, all have the SEQUENCE property or all have the BIND
attribute, have no components with PRIVATE accessibility, and have type parameters and components
that agree in order, name, and attributes. Otherwise, they are of different derived types. A data entity
declared using a type with the SEQUENCE property or with the BIND attribute is not of the same type
as an entity of a type declared to be PRIVATE or that has any components that are PRIVATE.

NOTE 4.25

An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y
END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
CONTAINS
SUBROUTINE SUB (A)
TYPE (POINT) :: A

END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because
the declarations of X1 and A both reference the same derived-type definition, X1 and A have the
same type. X1 and A also would have the same type if the derived-type definition were in a module
and both SUB and its containing program unit referenced the module.

NOTE 4.26

An example of data entities in different scoping units having the same type is:

PROGRAM PGM

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE

TYPE (EMPLOYEE) PROGRAMMER

CALL SUB (PROGRAMMER)

END PROGRAM PGM
SUBROUTINE SUB (POSITION)
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same type

58

10
11

12

13
14

15
16

17
18

19
20
21
22

2006/09/25 WORKING DRAFT J3/06-007r1

NOTE 4.26 (cont.)

because they are declared with reference to a derived-type definition with the same name, the
SEQUENCE property, and components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the
component names are not identical to the component names in derived type EMPLOYEE in the
main program, the actual argument PROGRAMMER would not be of the same type as the dummy
argument POSITION. Thus, the program would not be standard-conforming.

NOTE 4.27

The requirement that the two types have the same name applies to the type-names of the respective
derived-type-stmts, not to local names introduced via renaming in USE statements.

4.5.3 Derived-type parameters

4.5.3.1 Declaration

R436 type-param-def-stmt is INTEGER [kind-selector | , type-param-attr-spec :: B
W type-param-decl-list
R437 type-param-decl is type-param-name [= scalar-int-initialization-expr |

C439 (R436) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the
type-param-names in the derived-type-stmt of that derived-type-def.

C440 (R436) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a

type-param-name in a type-param-def-stmt in that derived-type-def.
R438 type-param-atir-spec is KIND
or LEN
The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is
default integer.

The type-param-attr-spec explicitly specifies whether a type parameter is a kind parameter or a length
parameter.

If a type-param-decl has a scalar-int-initialization-expr, the type parameter has a default value which
is specified by the expression. If necessary, the value is converted according to the rules of intrinsic
assignment (7.4.1.3) to a value of the same kind as the type parameter.

A type parameter may be used as a primary in a specification expression (7.1.6) in the derived-type-
def. A kind type parameter may also be used as a primary in an initialization expression (7.1.7) in the
derived-type-def .

NOTE 4.28

The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = kind(0.0)
INTEGER (selected_int_kind(12)), LEN :: d
!-— Specify a nondefault kind for 4.
REAL(k) :: element(d,d)

59

w

~N o g N

10
11
12
13
14
15
16
17
18
19
20
21
22

J3/06-007r1 WORKING DRAFT 2006/09/25

NOTE 4.28 (cont.)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of
procedures distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

4.5.3.2 Type parameter order

Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-
type specifiers.

The type parameter order of a nonextended type is the order of the type parameter list in the derived-
type definition. The type parameter order of an extended type consists of the type parameter order of
its parent type followed by any additional type parameters in the order of the type parameter list in the
derived-type definition.

NOTE 4.29

Given

TYPE :: t1(kl,k2)
INTEGER,KIND :: ki1,k2
REAL (k1) a(k2)

END TYPE

TYPE,EXTENDS(t1) :: t2(k3)
INTEGER,KIND :: k3
LOGICAL(k3) flag

END TYPE

the type parameter order for type T1 is K1 then K2, and the type parameter order for type T2 is
K1 then K2 then K3.

4.5.4 Components

4.5.4.1 Syntax

R439 component-part is [component-def-stmt | ...
R440 component-def-stmt is data-component-def-stmt
or proc-component-def-stmt
R441 data-component-def-stmt is declaration-type-spec [[, component-attr-spec-list | :: | W
B component-decl-list
R442 component-attr-spec is access-spec

or ALLOCATABLE
or DIMENSION (component-array-spec)
or DIMENSION [(deferred-shape-spec-list) | B
B [bracket co-array-spec rbracket
or CONTIGUOUS
or POINTER
R443 component-decl is component-name [(component-array-spec) | R

60

g~ W N =

10
11

12

13
14

15
16

17
18

19
20

21
22

23
24

25

26

27

28

29

30
31

32

2006,/09/25 WORKING DRAFT 13/06-007r1

R444

C441

C442

C443

C444

C445

C446

C447

C448

C449

W [lbracket co-array-spec rbracket | M
B [* char-length | [component-initialization]
component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

(R441) No component-attr-spec shall appear more than once in a given component-def-stmt.

(R441) If neither the POINTER nor ALLOCATABLE attribute is specified, the declaration-type-
spec in the component-def-stmt shall specify an intrinsic type or a previously defined derived

type.

(R441) If the POINTER or ALLOCATABLE attribute is specified, the declaration-type-spec in
the component-def-stmt shall be CLASS(*) or shall specify an intrinsic type or any accessible
derived type including the type being defined.

(R441) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec
shall be a deferred-shape-spec-list.

(R441) If a co-array-spec appears, it shall be a deferred-co-shape-spec-list and the component
shall have the ALLOCATABLE attribute.

(R441) If a co-array-spec appears, the component shall not be of type IMAGE_TEAM (13.8.3.7),
C_PTR, or C_LFUNPTR (15.3.3).

A data component whose type has a co-array ultimate component shall be a nonpointer nonal-
locatable scalar and shall not be a co-array.

(R441) If neither the POINTER attribute nor the ALLOCATABLE attribute is specified, each
component-array-spec shall be an explicit-shape-spec-list.

(R444) Each bound in the ezplicit-shape-spec shall either be an initialization expression or be a
specification expression that does not contain references to specification functions or any object
designators other than named constants or subobjects thereof.

J3 internal note

Unresolved Technical Issue 094
This contraint is inconsistent (as is the one 3 below): it allows

INTEGER c1(DIGITS(yvariable))
INTEGER c2(len_type_param)

but not

INTEGER c3(DIGITS(yvariable)+len_type_param)

It’s not quite trivial to word this correctly...

C450

C451

C452

C453

(R441) A component shall not have both the ALLOCATABLE and the POINTER attribute.

(R441) If the CONTIGUOUS attribute is specified, the component shall be an array with the
POINTER attribute.

(R443) The * char-length option is permitted only if the component is of type character.

(R440) Each type-param-value within a component-def-stmt shall either be a colon, be an ini-
tialization expression, or be a specification expression that contains neither references to speci-
fication functions nor any object designators other than named constants or subobjects thereof.

61

o A~ W

~

10
11

12
13

14

15

16
17
18
19

20

21
22

23

J3/06-007r1 WORKING DRAFT 2006/09/25

NOTE 4.30

Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec
may contain a type-param-name.

R445 proc-component-def-stm¢ is PROCEDURE ([proc-interface]) , R
W proc-component-attr-spec-list :: proc-decl-list
NOTE 4.31
See 12.4.3.5 for definitions of proc-interface and proc-decl.
R446 proc-component-attr-spec is POINTER
or PASS [(arg-name) |
or NOPASS
or access-spec
C454 (R445) The same proc-component-attr-spec shall not appear more than once in a given proc-
component-def-stmt.
C455 (R445) POINTER shall appear in each proc-component-attr-spec-list.
C456 (R445) If the procedure pointer component has an implicit interface or has no arguments,
NOPASS shall be specified.
C457 (R445) If PASS (arg-name) appears, the interface shall have a dummy argument named arg-
name.
(458 (R445) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.
4.5.4.2 Array components

A data component is an array if its component-decl contains a component-array-spec or its data-compo-
nent-def-stmt contains the DIMENSION clause with a component-array-spec. If the component-decl
contains a component-array-spec, it specifies the array rank, and if the array is explicit shape (5.3.7.2),
the array bounds; otherwise, the component-array-spec in the DIMENSION clause specifies the array
rank, and if the array is explicit shape, the array bounds.

A data component is a co-array if its component-decl contains a co-array-spec or its data-component-def-
stmt contains a DIMENSION clause with a co-array-spec. If the component-decl contains a co-array-spec
it specifies the co-rank; otherwise, the co-array-spec in the DIMENSION clause specifies the co-rank.

NOTE 4.32

An example of a derived type definition with an array component is:

TYPE LINE

END TYPE LINE
An example of declaring a variable LINE_.SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

REAL, DIMENSION (2, 2) :: COORD
COORD(:,1) has the value of (/X1, Y1i/)
COORD(:,2) has the value of (/X2, Y2/)
Line width in centimeters

1 for solid, 2 for dash, 3 for dot

REAL :: WIDTH
INTEGER :: PATTERN

62

2006,/09/25 WORKING DRAFT 13/06-007r1

NOTE 4.32 (cont.)

The scalar variable LINE_.SEGMENT has a component that is an array. In this case, the array
is a subobject of a scalar. The double colon in the definition for COORD is required; the double
colon in the definition for WIDTH and PATTERN is optional.

NOTE 4.33
An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined
by execution of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 4.34

Default initialization of an explicit-shape array component may be specified by an initialization
expression consisting of an array constructor (4.7), or of a single scalar that becomes the value of
each array element.

1 4.5.4.3 Pointer components

2 A component is a pointer (2.4.7) if its component-attr-spec-list contains the POINTER attribute. A
3 pointer component may be a data pointer or a procedure pointer.

NOTE 4.35
An example of a derived type definition with a pointer component is:

TYPE REFERENCE

INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE

PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR,
PAGE, and TITLE, the procedure pointer PRINT, which has an explicit interface the same as
printer_interface, plus a pointer to an array of characters holding SYNOPSIS. The size of this
target array will be determined by the length of the abstract. The space for the target may be
allocated (6.3.1) or the pointer component may be associated with a target by a pointer assignment
statement (7.4.2).

4 4.5.4.4 The passed-object dummy argument

5 A passed-object dummy argument is a distinguished dummy argument of a procedure pointer
6 component or type-bound procedure. It affects procedure overriding (4.5.7.3) and argument association
7 (12.5.2.2).

8 If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object
g dummy argument.

63

~

o ~N o o

10
11

12

13
14

15

16
17

18

19

20
21

22
23

24
25

26

27
28

29
30

31

32
33

34
35

36
37

J3/06-007r1 WORKING DRAFT 2006/09/25

If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argu-
ment of a procedure pointer component or type-bound procedure is its passed-object dummy argument.

If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy
argument of the procedure pointer component or named type-bound procedure.

C459 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data
object with the same declared type as the type being defined; all of its length type parameters
shall be assumed; it shall be polymorphic (4.3.1.3) if and only if the type being defined is
extensible (4.5.7). It shall not have the VALUE attribute.

NOTE 4.36

If a procedure is bound to several types as a type-bound procedure, different dummy arguments
might be the passed-object dummy argument in different contexts.

4.5.4.5 Default initialization for components

Default initialization provides a means of automatically initializing pointer components to be disassoci-
ated or associated with specific targets, and nonpointer nonallocatable components to have a particular
value. Allocatable components are always initialized to not allocated.

A pointer variable or component is data-pointer-initialization compatible with a target if the pointer
is type compatible with the target, they have the same rank, and the values of corresponding nondeferred
type parameters are specified by initialization expressions that have the same value.

R447 component-initialization is = initialization-expr
or => null-init
or => initial-data-target

R448 initial-data-target is designator

C460 (R441) If component-initialization appears, a double-colon separator shall appear before the
component-decl-list.

C461 (R441) If component-initialization appears, every type parameter and array bound of the com-
ponent shall be a colon or initialization expression.

C462 (R441) If => appears in component-initialization, POINTER shall appear in the component-
attr-spec-list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE
shall appear in the component-attr-spec-list.

C463 (R447) If initial-data-target appears, component-name shall be data-pointer-initialization com-
patible with it.

C464 (R448) The designator shall designate a variable that is an initialization target. Every subscript,
section subscript, substring starting point, and substring ending point in designator shall be an
initialization expression.

If null-init appears for a pointer component, that component in any object of the type has an initial
association status of disassociated (16.5.2.2) or becomes disassociated as specified in 16.5.2.2.2.

A variable is an initialization target if it has the TARGET attribute, either has the SAVE attribute
or is declared in the main program, and does not have the ALLOCATABLE attribute.

If initial-data-target appears for a data pointer component, that component in any object of the type is
initially associated with the target or becomes associated with the target as specified in 16.5.2.2.1.

64

w N

© 0o N O g

11
12
13

14
1